Tropical Animal Health and Production

, Volume 39, Issue 6, pp 419–426 | Cite as

Voluntary intake, chemical composition and in vitro digestibility of fresh forages fed to Guinea pigs in periurban rearing systems of Kinshasa (Democratic Republic of Congo)

  • J. BindelleEmail author
  • Y. Ilunga
  • M. Delacollette
  • M. Muland Kayij
  • J. Umba di M’Balu
  • E. Kindele
  • A. Buldgen
Original Paper


Bindelle, J., Ilunga, Y., Delacollette, M., Muland Kayij, M., Umba di M’Balu, J., Kindele, E. and Buldgen, A. Voluntary intake, chemical composition and in vitro digestibility of fresh forages fed to Guinea pigs in periurban rearing systems of Kinshasa (Democratic Republic of Congo). Tropical Animal Health and Production.

The daily voluntary intake (DVI) of Guinea pigs (GP) fed 15 fresh forages used in periurban rearing systems of Kinshasa (Democratic Republic of Congo) was investigated. In order to determine the best forages combination for GP diet, DVI was compared to their nutritional value measured in vitro using 1) a pepsin-pancreatin hydrolysis, 2) an gas fermentation test on the hydrolysed residues with an inoculum prepared from GP faeces, and 3) the chemical composition of the offered feeds and the hydrolysis residues.

The forages ranking based on the DVI was correlated to the NDF content, but not to their nutritional values determined in vitro. According to their high DVI (from 4.23 to 7.75 g/kg liveweigth), and their valuable in vitro nutritional values (crude protein ranging from 261 to 279 g crude protein kg−1DM, pepsin-pancreatin digestibilities of the dry matter from 0.55 to 0.59 and final gas production from 170 to 196 l kg−1DM), Desmodium intortum, Euphorbia heterophylla or Amaranthus hybridus, can be suggested to the farmers to complement the usual diet distributed to the GP based on Panicum maximum.


Guinea pig Palatability Nutritive value Forage Urban agriculture 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Adehan, R., Kpodekon, M., Houenon, J., Ossenti, T.B. and Lebas F., 1994. Etude comparée de l’appétibilité de vingt-trois plantes fourragères chez le lapin. Premiers résultats, Options méditérranéennes, 8, 125–129Google Scholar
  2. Bindelle, J., Buldgen, A., Boudry, C. and Leterme, P., 2007a. Effect of inoculum and pepsin-pancreatin hydrolysis on fibre fermentation measured by the gas production technique in pigs, Animal Feed Science and Technology, 132, 111–122CrossRefGoogle Scholar
  3. Bindelle, J., Buldgen, A., Michaux, D., Wavreille, J., Destain, J.P. and Leterme, P., 2007b. Influence of purified dietary fibre on bacterial protein synthesis in the large intestine of pigs, as measured by the gas production technique, Livestock Science, 109, 232–235CrossRefGoogle Scholar
  4. Bogdan, A.V., 1977. Tropical pasture and fodder plants (grasses and legumes), (Longman, London)Google Scholar
  5. Boisen, S. and Fernández, J.A., 1997. Prediction of the total tract digestibility of energy in substrates and pigs diets by in vitro analyses, Animal Feed Science and Technology, 68, 277–286CrossRefGoogle Scholar
  6. Černý, K., Kordylas, M., Pospíšil, F., Švábenský, O. and Zajíc, B., 1971. Nutritive value of the winged bean (Psophocarpus palustris Desv.), British Journal of Nutrition, 26, 293–299PubMedCrossRefGoogle Scholar
  7. Chauca de Zaldívar, L., 1997. Producción de cuyes (Cavia porcellus), (FAO, Rome)Google Scholar
  8. Compère, P., 1970. Carte des sols et de la végétation du Congo, du Rwanda et du Burundi. 25. Bas-Congo. B : Notice explicative de la carte de la végétation, (INEAC, Brussels)Google Scholar
  9. Degras, L., 1998. La patate (la patate douce), (Maisonneuve et Larose, Paris)Google Scholar
  10. Faboya, O.O.P., 1990. The effect of pre-process handling conditions on the ascorbic acid content of green leafy vegetables, Food Chemistry, 38, 297–303CrossRefGoogle Scholar
  11. FAO, Food and Agriculture Organisation, 2006. Statistical Yearbook 2005–2006. Vol. 2/1 and 2/2, (FAO, Rome)Google Scholar
  12. Fasuyi, A.O., 2007. Bio-nutritional evaluations of three tropical leaf vegetables (Telfairia occidentalis, Amaranthus cruentus and Talinum triangulare) as sole dietary protein sources in rat assay, Food Chemistry, 103, 757–765CrossRefGoogle Scholar
  13. Fonteh, F.A., Niba, A.T., Kudi, A.C., Tchoumboue, J. and Awah-Ndukum, J., 2005. Influence of weaning age on the growth performance and survival of weaned Guinea pigs, Livestock Research for Rural Development. 17.
  14. Ford, C.W., 1978. In vitro digestibility and chemical composition of three tropical pasture legumes, Desmodium intortum cv. Greenleaf, D. tortuosum and Macroptilium atropurpureum cv. Siratro, Australian Journal of Agricultural Research, 29, 963–974CrossRefGoogle Scholar
  15. Groot, J.C.J., Cone, J.W., Williams, B.A., Debersaques, F.M.A. and Lantinga, E.A., 1996. Multiphasic analysis of gas production kinetics for in vitro fermentation of ruminant feeds, Animal Feed Science and Technology. 64, 77–89CrossRefGoogle Scholar
  16. Guérin, H., 1999. Valeur alimentaire des fourrages cultivés. In: G. Roberge and B. Toutain (eds), Cultures fourragères tropicales, (CIRAD, Montpellier), 93–145Google Scholar
  17. Hardouin, J., Demey, F. and Fransolet, M.F., 1991. Le cobaye Cavia porcellus L., animal de boucherie en pays tropicaux, Annales de Gembloux, 97, 69–80Google Scholar
  18. Kouonmenioc, J., Ngou Ngoupayou, J.D. and Fotso Tagny, J.M., 2000. Consommation de quelques graminées tropicales par le cobaye (Cavia porcellus): performances et determination des surfaces nécessaires à l’entretien d’un cheptel, Tropicultura, 18, 80–83Google Scholar
  19. Leterme, P., Londoño, A.M., Estrada, F., Souffrant, W.B. and Buldgen, A., 2005. Chemical composition, nutritive value and voluntary intake of tropical tree foliage and cocoyam in pigs, Journal of the Science of Food and Agriculture, 85, 1725–1732CrossRefGoogle Scholar
  20. Lim, Y.Y., Lim, T.T. and Tee, J.J., 2007. Antioxidant properties of several tropical fruits : a comparative study, Food chemistry, 103, 1003–1008CrossRefGoogle Scholar
  21. Malaisse, F., 1997. Se nourrir en forêt claire africaine. Approche écologique et nutritionnelle, (Presses agronomiques de Gembloux, Gembloux)Google Scholar
  22. Menke, K.H. and Steingass, H., 1988. Estimation of the energetic feed value obtained from chemical analysis and in vitro gas production using rumen fluid, Animal Research and Development, 28, 7–55Google Scholar
  23. Molyneux, R.J. and Ralph M.H., 1992. Plant toxins and palatability to herbivores. Journal of Range Management, 45, 13–18Google Scholar
  24. Nkidiaka, O., 2004. Les pratiques d’élevage en milieu urbain et péri urbain de la ville de Kinshasa : synthèse générale des enquêtes, Troupeaux et Cultures des Tropiques, 3, 50–52Google Scholar
  25. NRC, National Research Council, 1995. Nutrient requirements of laboratory animals. 4th Ed, (National Academy of Sciences, Washington)Google Scholar
  26. Rémésy, C., Demigné, C. and Morand, C., 1995. Metabolism of short-chain fatty acids in the liver. In: J.H. Cummings, J.L. Rombeau and T. Sakata (eds), Physiological and clinical aspects of short-chain fatty acids, (Cambridge University Press, Cambridge), 171–190Google Scholar
  27. Stanco, G., Di Meo, C., Piccolo, G. and Nizza, A., 2003. Effect of storage duration on frozen inoculum to be used for the in vitro gas production technique in rabbit. Italian Journal of Animal Science, 2, 265–270Google Scholar
  28. Tane, P., Tatsimo, S.D., Ayimele, G.A. and Connolly, J.D., 2006. Bioactive metabolites from Aframomum species. In: J.O. Midiwo, A. Yenesew and S. Derese (eds), Proceedings of the 11th NAPRECA symposium, Antananarivo, 2005, (NAPRECA, Natural Product Research Network for Eastern and Central Africa, Nairobi), 214–223.Google Scholar
  29. Trefon, T., 2000. Population et pauvreté à Kinshasa, Afrique contemporaine, 194, 82–89Google Scholar
  30. Van Soest, P.J., Robertson, J.B. and Lewis, B.A., 1991. Methods for dietary fiber, neutral detergent fiber, and nonstarch polysaccharides in relation to animal nutrition, Journal of Dairy Science, 74, 3583–3597PubMedCrossRefGoogle Scholar
  31. Yagi, F., Sawada, R., Imada, T., Toyonaga, S., Tadera, K. and Ishihata, K., 1994. Two isolectins from leaves of winged bean, Psophocarpus tetragonolobus (L.) DC., Plant Cell Physiology, 35, 1087–1095PubMedGoogle Scholar

Copyright information

© Springer Science + Business Media B.V. 2007

Authors and Affiliations

  • J. Bindelle
    • 1
    Email author
  • Y. Ilunga
    • 2
  • M. Delacollette
    • 1
  • M. Muland Kayij
    • 2
  • J. Umba di M’Balu
    • 3
  • E. Kindele
    • 3
  • A. Buldgen
    • 1
  1. 1.Department of Animal HusbandryGembloux Agricultural UniversityGemblouxBelgium
  2. 2.Centre agronomique et vétérinaire tropicalKinshasaCongo
  3. 3.Institut supérieur agro-vétérinaire, KimwenzaKinshasaCongo

Personalised recommendations