Skip to main content
Log in

Brittle or Ductile? Abrasive Wear of Polyacrylamide Hydrogels Reveals Load-Dependent Wear Mechanisms

  • Original Paper
  • Published:
Tribology Letters Aims and scope Submit manuscript

Abstract

Cartilage and hydrogels are composed of an elastic network that retains a large volume of water allowing them to efficiently maintain smooth sliding interfaces while under high compressive loads. For hydrogels to be viable candidates to replace osteoarthritic cartilage, a study of their robust long-term use and surface failure mechanism is necessary. In this work, a sandpaper covered probe attached to a microtribometer with a reciprocating stage was used to wear 7.5 wt% polyacrylamide hydrogels under a range of speeds (1 mm/s, 2 mm/s, and 3 mm/s) and normal loads (1 mN, 5 mN, 10 mN, and 20 mN). The subsequent wear scars were imaged using a 3D laser scanning confocal microscope. For all sliding speeds of the 1 mN and 5 mN loading conditions, microcutting, which is characteristic of brittle materials, contributed more to the measured wear volume. For the 10 mN and 20 mN loading conditions, microplowing, which is characteristic of ductile materials, contributed more to the measured wear volume. We found that the mechanical wear of hydrogels is a competition between ductile fracture and brittle fracture, and the dominant mechanism is dependent upon load, but not speed for the range of speeds tested. The different wear behavior between the lower loads (1 mN and 5 mN) and higher loads (10 mN and 20 mN) suggests that there is a critical load between 5 and 10 mN that marks the shift from more brittle fracture to more ductile fracture. This work is the beginning of developing more accurate predictions of the wear behavior of hydrogels and cartilage based on the nature of the materials.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hollander, A.P., Pidoux, I., Reiner, A., Rorabeck, C., Bourne, R., Poole, A.R.: Damage to type II collagen in aging and osteoarthritis starts at the articular surface, originates around chondrocytes, and extends into the cartilage with progressive degeneration. J. Clin. Invest. 96(6), 2859–2869 (1995)

    CAS  Google Scholar 

  2. Pritzker, K.P.H., Gay, S., Jimenez, S.A., Ostergaard, K., Pelletier, J.P., Revell, K., Salter, D., van den Berg, W.B.: Osteoarthritis cartilage histopathology: grading and staging. Osteoarthr. Cartil. 14(1), 13–29 (2006)

    CAS  Google Scholar 

  3. Liu, Y., He, W., Zhang, Z., Lee, B.: Recent developments in tough hydrogels for biomedical applications. Gels 4(2), 46 (2018)

    Google Scholar 

  4. Mehrali, M., Thakur, A., Pennisi, C.P., Talebian, S., Arpanaei, A., Nikkhah, M., Dolatshahi-Pirouz, A.: Nanoreinforced hydrogels for tissue engineering: biomaterials that are compatible with load-bearing and electroactive tissues. Adv. Mater. (2017). https://doi.org/10.1002/adma.201603612

  5. Darnell, M.C., Sun, J.Y., Mehta, M., Johnson, C., Arany, P.R., Suo, Z., Mooney, D.J.: Biomaterials performance and biocompatibility of extremely tough alginate/polyacrylamide hydrogels. Biomaterials 34(33), 8042–8048 (2013)

    CAS  Google Scholar 

  6. Wei, D., Xiao, W., Sun, J., Zhong, M., Guo, L., Fan, H., Zhang, X.: A Biocompatible hydrogel with improved stiffness and hydrophilicity for modular tissue engineering assembly. J. Mater. Chem. B 3(14), 2753–2763 (2015)

    CAS  Google Scholar 

  7. Sun, Z., Liu, S., Li, K., Tan, L., Cen, L., Fu, G.: Well-defined and biocompatible hydrogels with toughening and reversible photoresponsive properties. Soft Matter 12(7), 2192–2199 (2016)

    CAS  Google Scholar 

  8. Bodugoz-Senturk, H., Macias, C.E., Kung, J.H., Muratoglu, O.K.: Poly(vinyl alcohol)-acrylamide hydrogels as load-bearing cartilage substitute. Biomaterials 30(4), 589–596 (2009)

    CAS  Google Scholar 

  9. Sophia Fox, A.J., Bedi, A., Rodeo, S.A.: The basic science of articular cartilage: structure, composition, and function. Sports Health 1(6), 461–468 (2009)

    Google Scholar 

  10. Radin, E.L., Swann, D.A., Paul, I.L., Mcgrath, P.J.: Factors influencing articular cartilage wear in vitro. Arthritis Rheum. 25(8), 974–980 (1982)

    CAS  Google Scholar 

  11. Tokita, M., Tanaka, T.: Friction coefficient of polymer networks of gels. J. Chem. Phys. 95(6), 4613–4619 (1991)

    CAS  Google Scholar 

  12. Gong, J., Higa, M., Iwasaki, Y., Katsuyama, Y., Osada, Y.: Friction of gels. J. Phys. Chem. B 101(28), 5487–5489 (1997)

    CAS  Google Scholar 

  13. Gong, J., Iwasaki, Y., Osada, Y., Kurihara, K., Hamai, Y. Friction of gels. 3. Friction on Solid Surfaces. J. Phys. Chem. B 103(29), 6001–6006 (1999)

    CAS  Google Scholar 

  14. Gong, J.P., Kagata, G., Osada, Y.: Friction of gels 4: Friction on charged gels. J. Phys. Chem. B 103(29), 6007–6014 (1999)

    CAS  Google Scholar 

  15. Gong, J.P., Iwasaki, Y., Osada, Y.: Friction of gels 5: negative load dependence of polysaccharide gels. J. Phys. Chem. B 104(15), 3423–3428 (2000)

    CAS  Google Scholar 

  16. Kagata, G., Gong, J.P., Osada, Y.: Friction of gels 6: effects of sliding velocity and viscoelastic responses of the network. J. Phys. Chem. B 106(18), 4596–4601 (2002)

    CAS  Google Scholar 

  17. Kagata, G., Gong, J.P., Osada, Y.: Friction of gels 7: observation of static friction between like-charged gels. J. Phys. Chem. B 107(37), 10221–10225 (2003)

    CAS  Google Scholar 

  18. Gong, J.P.: Friction and Lubrication of hydrogels—its richness and complexity. Soft Matter 2(7), 544–552 (2006)

    CAS  Google Scholar 

  19. Denisin, A.K., Pruitt, B.L.: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8(34), 21893–21902 (2016)

    CAS  Google Scholar 

  20. Horkay, F., Lin, D.C.: Mapping the local osmotic modulus of polymer gels. Langmuir 25(15), 8735–8741 (2009)

    CAS  Google Scholar 

  21. Hui, C.Y., Lin, Y.Y., Chuang F.U.C., Shull, K.R., Lin, W.C.: A contact mechanics method for characterizing the elastic properties and permeability of gels. J. Polym. Sci. Part B Polym. Phys. 44(2), 359–370 (2006).

  22. Chan, E.P., Hu, Y., Johnson, P.M., Suo, Z., Stafford, C.M.: spherical indentation testing of poroelastic relaxations in thin hydrogel layers. Soft Matter 8(5), 1492–1498 (2012)

    CAS  Google Scholar 

  23. Kim, J., Dunn, A.C.: Soft hydrated sliding interfaces as complex fluids. Soft Matter 12(31), 6536–6546 (2016)

    CAS  Google Scholar 

  24. Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54(1), 59–66 (2014)

    CAS  Google Scholar 

  25. Pitenis, A.A., Urueña, J.M., Nixon, R.M., Bhattacharjee, T., Krick, B.A., Dunn, A.C., Angelini, T.E., Sawyer, W.G.: Lubricity from entangled polymer networks on hydrogels. J. Tribol. 138(4), 042102 (2016)

    Google Scholar 

  26. Dunn, A.C., Urueña, J.M., Huo, Y., Perry, S.S., Angelini, T.E., Sawyer, W.G.: Lubricity of surface hydrogel layers. Tribol. Lett. 49(2), 371–378 (2013)

    CAS  Google Scholar 

  27. Suciu, A.N., Iwatsubo, T., Matsuda, M., Nishino, T.: A study upon durability of the artificial knee joint with PVA hydrogel cartilage. JSME Int. J. Ser. C 47(1), 199–208 (2004)

    Google Scholar 

  28. Freeman, M.E., Furey, M.J., Love, B.J., Hampton, J.M.: Friction, wear, and lubrication of hydrogels as synthetic articular cartilage. Wear 241(2), 129–135 (2000)

    CAS  Google Scholar 

  29. Katta, J.K., Marcolongo, M., Lowman, A., Mansmann, K.A.: friction and wear behavior of poly(vinyl alcohol)/poly(vinyl pyrrolidone) hydrogels for articular cartilage replacement. J. Biomed. Mater. Res. Part A 83A(2), 471–479 (2007)

    CAS  Google Scholar 

  30. Gong, J.P., Katsuyama, Y., Kurokawa, T., Osada, Y.: Double-network hydrogels with extremely high mechanical strength. Adv. Mater. 15(14), 1155–1158 (2003)

    CAS  Google Scholar 

  31. Bonyadi, S.Z., Atten, M., Dunn, A.C.: Self-regenerating compliance and lubrication of polyacrylamide hydrogels. Soft Matter 15(43), 8728–8740 (2019)

    CAS  Google Scholar 

  32. Penskiy, I., Gerratt, A.P., Bergbreiter, S.: Friction, adhesion and wear properties of PDMS films on silicon sidewalls. J. Micromech. Microeng. (2011). https://doi.org/10.1088/0960-1317/21/10/105013

    Article  Google Scholar 

  33. Schulenberg, B., Arnold, B., Patton, W.F.: An improved mechanically durable electrophoresis gel matrix that is fully compatible with fluorescence-based protein detection technologies. Proteomics 3(7), 1196–1205 (2003)

    CAS  Google Scholar 

  34. Itagaki, H., Kurokawa, T., Furukawa, H., Nakajima, T., Katsumoto, Y., Gong, J.P.: Water-induced brittle-ductile transition of double network hydrogels. Macromolecules 43(22), 9495–9500 (2010)

    CAS  Google Scholar 

  35. Zhang, J., Daubert, C.R., Foegeding, E.A.: Polyacrylamide gels as elastic models for food gels: fracture properties affected by dextran and glycerol. J. Texture Stud. 37(2), 200–220 (2006)

    CAS  Google Scholar 

  36. Long, R., Hui, C.Y.: Crack buckling in soft gels under compression. Acta Mech. Sin. Xuebao 28(4), 1098–1105 (2012)

    Google Scholar 

  37. Agnelli, S., Baldi, F., Bignotti, F., Salvadori, A., Peroni, I.: Fracture characterization of hyperelastic polyacrylamide hydrogels. Eng. Fract. Mech. (2018). https://doi.org/10.1016/j.engfracmech.2018.06.004

    Article  Google Scholar 

  38. Yang, C., Yin, T., Suo, Z.: Polyacrylamide hydrogels I: Network imperfection. J. Mech. Phys. Solids 131, 43–55 (2019)

    CAS  Google Scholar 

  39. Nam, S., Lee, J., Brownfield, D.G., Chaudhuri, O.: Viscoplasticity enables mechanical remodeling of matrix by cells. Biophys. J. 111(10), 2296–2308 (2016)

    CAS  Google Scholar 

  40. Liu, J., Yang, C., Yin, T., Wang, Z., Qu, S., Suo, Z.: Polyacrylamide hydrogels. II. Elastic dissipater. J. Mech. Phys. Solids 133, 103737 (2019)

  41. Zhang, E., Bai, R., Morelle, X.P., Suo, Z.: Fatigue fracture of nearly elastic hydrogels. Soft Matter 14(18), 3563–3571 (2018)

    CAS  Google Scholar 

  42. Zhorin, V.A., Kiselev, M.R., Roldugin, V.I.: The effect of plastic deformation under high pressure on the thermal effects in polyacrylamide. Int. Polym. Sci. Technol. 43(9), 19–24 (2016)

    Google Scholar 

  43. Kato, K., Adachi, K.: 7. Wear mechanisms. In: Bhushan B. (ed.) Mod. Tribol. Handbook, vol. 1. CRC Press, Boca Raton (2001_.

  44. Kim, C.L., Kim, D.E.: Durability and self-healing effects of hydrogel coatings with respect to contact condition. Sci. Rep. 7(1), 1–11 (2017)

    Google Scholar 

  45. VK-X1000 Series Multifile Analyzer Software User Manual. Osaka: Keyence Corporation (2018)

  46. Moy, P., Tusit, W.T., Gunnarsson, C.L.: Tensile deformation of ballistic gelatin as a function of loading rate. In: Proceedings of the XIth International Congress and Exposition, June, pp. 2–5 (2008)

  47. Mohd Tobi, A.L., Ding, J., Bandak, G., Leen, S.B., Shipway, P.H.: A Study on the interaction between fretting wear and cyclic plasticity for Ti–6Al–4V. Wear 267(1–4), 270–282 (2009)

    CAS  Google Scholar 

  48. Fouvry, S., Arnaud, P., Mignot, A., Neubauer, P.: Contact Size, Frequency and cyclic normal force effects on Ti–6Al–4V fretting wear processes: an approach combining friction power and contact oxygenation. Tribol. Int. 113, 460–473 (2017)

    CAS  Google Scholar 

  49. Tobi, A.L.M., Sun, W., Shipway, P.H.: Evolution of plasticity-based wear damage in gross sliding fretting of a Ti–6Al–4V non-conforming contact. Tribol. Int. 113, 474–486 (2017)

    Google Scholar 

  50. Mi, X., Cai, Z.B., Xiong, X.M., Qian, H., Tang, L.C., Xie, Y.C., Peng, J.F., Zhu, M.H.: Investigation on fretting wear behavior of 690 alloy in water under various temperatures. Tribol. Int.100, 400–409 (2016)

  51. Geringer, J., Forest, B., Combrade, P.: Wear analysis of materials used as orthopaedic implants. Wear 261(9), 971–979 (2006)

    CAS  Google Scholar 

  52. Liu, A., Deng, J., Cui, H., Chen, Y., Zhao, J.: Friction and wear properties of TiN, TiAlN, AlTiN and CrAlN PVD nitride coatings. Int. J. Refract. Met. Hard Mater. 31, 82–88 (2012)

    Google Scholar 

  53. Archard, J.F.: Contact and rubbing of flat surfaces. J. Appl. Phys. 24(8), 981–988 (1953)

    Google Scholar 

  54. Hutchings, I., Shipway, P.: Sliding Wear, vol. 10, 2nd edn. Elsevier Ltd., Amsterdam (1987)

  55. Pearson, S.R., Shipway, P.H.: Is the wear coefficient dependent upon slip amplitude in fretting? Vingsbo and Söderberg revisited. Wear 330–331, 93–102 (2015)

    Google Scholar 

  56. Lamethe, J.F., Sergot, P., Chateauminois, A., Briscoe, B.J.: Contact fatigue behaviour of glassy polymers with improved toughness under fretting wear conditions. Wear 255(1–6), 758–765 (2003)

    CAS  Google Scholar 

  57. Abdelbary, A.: Fatigue wear of unfilled polymers. Wear Polym. Compos. 67–93 (2015)

  58. Sauger, E., Ponsonnet, L., Martin, J.M., Vincent, L.: Study of the tribologically transformed structure created during fretting tests. Tribol. Int. 33(11), 743–750 (2000)

    CAS  Google Scholar 

  59. Fouvry, S., Kapsa, P., Sauger, E., Martin, J., Ponsonnet, L., Vincent, L.: Tribologically transformed structure in fretting. Wear 245(1–2), 39–52 (2002)

    Google Scholar 

  60. Vingsbo, O., Soderberg, S.: On fretting maps. Wear 126, 131–147 (1988)

    CAS  Google Scholar 

  61. Zhou, Z.R., Nakazawa, K., Zhu, M.H., Maruyama, N., Kapsa, P., Vincent, L.: Progress in fretting maps. Tribol. Int. 39(10), 1068–1073 (2006)

    Google Scholar 

  62. Zhou, Z.R., Fayeulle, S., Vincent, L.: Cracking behaviour of various aluminium alloys during fretting wear. Wear 155(2), 317–330 (1992)

    CAS  Google Scholar 

  63. Petersen, D., Link, R., Rutherford, K., Hutchings, I.: Theory and application of a micro-scale abrasive wear test. J. Test. Eval. 25(2), 250 (2009)

    Google Scholar 

  64. Fouvry, S., Kapsa, P., Vincent, L.: Quantification of fretting damage. Wear 200, 186–205 (1996)

    CAS  Google Scholar 

  65. Heredia, S., Fouvry, S.: Introduction of a new sliding regime criterion to quantify partial, mixed and gross slip fretting regimes: correlation with wear and cracking processes. Wear 269(7–8), 515–524 (2010)

    CAS  Google Scholar 

  66. Ohmae, N., Tsukizoe, T.: The effect of slip amplitude on fretting. Wear 27(3), 281–294 (1974)

    Google Scholar 

  67. Fouvry, S., Kapsa, P., Vincent, L.: Elastic–plastic shakedown analysis of fretting wear. Wear 247(1), 41–54 (2001)

    CAS  Google Scholar 

  68. Liu, F., Fisher, J., Jin, Z.: Wear prediction of orthopaedic implants. Wear Orthop. Implant. Artif. Joints (2012). https://doi.org/10.1533/9780857096128.1.403

    Article  Google Scholar 

  69. Abdo, J.: Materials sliding wear model based on energy dissipation. Mech. Adv. Mater. Struct. 22(4), 298–304 (2015)

    Google Scholar 

  70. Sudre, G., Hourdet, D., Cousin, F., Creton, C., Tran, Y.: N-dimethylacrylamide) hydrogels. Langmuir 28(33), 12282–12287 (2012)

    CAS  Google Scholar 

  71. Dimitriadis, E.K., Horkay, F., Maresca, J., Kachar, B., Chadwick, R.S.: Determination of elastic moduli of thin layers of soft material using the atomic force microscope. Biophys. J. 82(5), 2798–2810 (2002)

    CAS  Google Scholar 

  72. Franco, L.A., Sinatora, A.: Material removal factor (Fab): a critical assessment of its role in theoretical and practical approaches to abrasive wear of ductile materials. Wear 382–383, 51–61 (2017)

    Google Scholar 

  73. Hokkirigawa, K., Kato, K.: An experimental and theoretical investigation of ploughing, cutting and wedge formation during abrasive wear. Tribol. Int. 21(1), 51–57 (1988)

    CAS  Google Scholar 

  74. Onions, R.A., Archard, J.F.: The contact of surfaces having a random structure. J. Phys. D. Appl. Phys. 6(3), 289–304 (1973)

    Google Scholar 

  75. Fouvry, S., Liskiewicz, T., Kapsa, P., Hannel, S., Sauger, E.: An energy description of wear mechanisms and its applications to oscillating sliding contacts. Wear 255, 287 (2003)

    CAS  Google Scholar 

  76. Rivlin, R.S.: Large elastic deformations of isotropic materials. IV. Further developments of the general theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 241, 379–397 (1948)

  77. Lin, D.C., Dimitriadis, E.K., Horkay, F.: Elasticity of rubber-like materials measured by AFM nanoindentation. Express Polym. Lett. 1(9), 576–584 (2007)

    Google Scholar 

  78. Lin, D.C., Shreiber, D.I., Dimitriadis, E.K., Horkay, F.: Spherical indentation of soft matter beyond the hertzian regime: numerical and experimental validation of hyperelastic models. Biomech. Model. Mechanobiol. 8(5), 345–358 (2009)

    Google Scholar 

  79. Mesarovic, S.D.J., Fleck, N.A.: Spherical indentation of elastic–plastic solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 455(1987), 2707–2728 (1999)

  80. Johnson, K.L.: One hundred years of Hertz contact. Proc. Inst. Mech. Eng. 196(1), 363–378 (1982)

    Google Scholar 

  81. Hutchings, I., Shipway, P.: Surface Topography and Surfaces in Contact, 2nd edn. Elsevier Ltd., Amsterdam (2017)

    Google Scholar 

  82. Moreira, D.C., Nunes, L.C.S.: Comparison of simple and pure shear for an incompressible isotropic hyperelastic material under large deformation. Polym, Test (2013)

    Google Scholar 

  83. Sakai, T., Akagi, Y., Kondo, S., Chung, U.: Experimental verification of fracture mechanism for polymer gels with controlled network structure. Soft Matter 10(35), 6658–6665 (2014)

    CAS  Google Scholar 

  84. Kundu, S., Crosby, A.J.: Cavitation and fracture behavior of polyacrylamide hydrogels. Soft Matter 5(20), 3963–3968 (2009)

    CAS  Google Scholar 

Download references

Acknowledgements

This work was carried out in part in the Frederick Seitz Materials Research Laboratory Central Research Facilities, University of Illinois. We thank our colleagues at the Materials Tribology Laboratory for their valuable discussions and inspiration. We also thank Matt Milner for his help in performing the tensile tests on the hydrogel. This work was supported by NSF Award Number 1563087.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alison C. Dunn.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 1119 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bonyadi, S.Z., Dunn, A.C. Brittle or Ductile? Abrasive Wear of Polyacrylamide Hydrogels Reveals Load-Dependent Wear Mechanisms. Tribol Lett 68, 16 (2020). https://doi.org/10.1007/s11249-019-1259-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11249-019-1259-3

Keywords

Navigation