Tribology Letters

, 68:24 | Cite as

Effect of Mating Material and Graphitization on Wear of a-C:H Coating in Boundary Base Oil Lubrication

  • Kouami Auxence Melardot AbouaEmail author
  • Noritsugu Umehara
  • Hiroyuki Kousaka
  • Takayuki Tokoroyama
  • Motoyuki Murashima
  • Mohd Muhyiddin Bin Mustafa
  • Yutaka Mabuchi
  • Tsuyoshi Higuchi
  • Masahiro Kawaguchi
Original Paper


Hydrogenated amorphous carbon (a-C:H) coating exhibits different wear behaviors depending on its counterpart material in boundary lubricated sliding contact. In previous works, tribological behaviors of a-C:H coating were investigated against steel, chromium, and germanium counterpart materials. The specific wear rate of a-C:H coating was found to decrease with the ability of its counterpart material to react with or dissolve carbon. The present study investigated how graphitization of a-C:H coating's top layers and interactions of the counterpart material with carbon influence wear behaviors of a-C:H coating in boundary lubrication. Results show that a-C:H coating shows graphitization of its top layers regardless the counterpart material. Correlation with differences in wear behaviors of the a-C:H coating leads to the conclusion that graphitization will induce high wear of a-C:H coating only when there are also atomic interactions between the DLC coating and its counterpart material.


a-C:H coating Steel Chromium Germanium Graphitization Wear Carbon diffusion 



  1. 1.
    Budinski, K.G.: Guide to Friction, Wear, and Erosion Testing. ASTM International, West Conshohocken (2009)Google Scholar
  2. 2.
    Kato, K.: Classification of wear mechanisms/models. In: Stachowiak, G.W. (ed.) Wear—Materials, Mechanisms and Practice, pp. 9–20. Wiley, Chichester (2006)Google Scholar
  3. 3.
    Neale, M.J., Gee, M.: Guide to Wear Problems and Testing for Industry. William Andrew Pub, Norwich (2001)Google Scholar
  4. 4.
    Aboua, K.A.M., Umehara, N., Kousaka, H., Tokoroyama, T., Murashima, M., Tasdemir, H.A., Mabuchi, Y., Higuchi, T.: Effect of ZnDTP triboflim’s morphology on friction behaviors of DLC coatings: tribofilm characterization by 3D scanning electron microscope observation. J. Adv. Mech. Des. Syst. Manuf. (2018). CrossRefGoogle Scholar
  5. 5.
    Abdullah Tasdemir, H., Tokoroyama, T., Kousaka, H., Umehara, N., Mabuchi, Y.: Influence of zinc dialkyldithiophosphate tribofilm formation on the tribological performance of self-mated diamond-like carbon contacts under boundary lubrication. Thin Solid Films 562, 389–397 (2014). CrossRefGoogle Scholar
  6. 6.
    Haque, T., Morina, A., Neville, A., Kapadia, R., Arrowsmith, S.: Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions. Wear 266, 147–157 (2009). CrossRefGoogle Scholar
  7. 7.
    De Barros’Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005). CrossRefGoogle Scholar
  8. 8.
    Robertson, J.: Diamond-like amorphous carbon. Mater. Sci. Eng. R. Rep. 37, 129–281 (2002). CrossRefGoogle Scholar
  9. 9.
    Erdemir, A., Donnet, C.: Tribology of diamond-like carbon films: recent progress and future prospects. (2006).
  10. 10.
    Bhushan, B.: Modern Tribology Handbook. CRC Press, Boca Raton (2001)Google Scholar
  11. 11.
    Mobarak, H.M., Chowdhury, M.: Tribological performance of hydrogenated amorphous carbon (a-C: H) DLC coating when lubricated with biodegradable vegetal canola oil. Tribol. Ind. 36, 163–171 (2014)Google Scholar
  12. 12.
    Almahmud, K.A.H., Varman, M., Kalam, M.A., Masjuki, H.H., Mobarak, H.M., Zulkifli, N.W.M.: Tribological characteristics of amorphous hydrogenated (a-C: H) and tetrahedral (ta-C) diamond-like carbon coating at different test temperatures in the presence of commercial lubricating oil. Surf. Coatings Technol. 245, 133–147 (2014). CrossRefGoogle Scholar
  13. 13.
    Deng, X., Kousaka, H., Tokoroyama, T., Umehara, N.: Thermal stability and high-temperature tribological properties of a-C: H and Si-DLC deposited by microwave sheath voltage combination plasma. Tribol. Online 8, 257–264 (2013). CrossRefGoogle Scholar
  14. 14.
    Sugimoto, I., Honda, F., Inoue, K.: Analysis of wear behavior and graphitization of hydrogenated DLC under boundary lubricant with MoDTC. Wear 305, 124–128 (2013). CrossRefGoogle Scholar
  15. 15.
    Liu, Y., Meletis, E.I.: Evidence of graphitization of diamond-like carbon films during sliding wear. J. Mater. Sci. 32, 3491–3495 (1997). CrossRefGoogle Scholar
  16. 16.
    Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82, 48–56 (1996). CrossRefGoogle Scholar
  17. 17.
    Aboua, K.A.M., Umehara, N., Kousaka, H., Tokoroyama, T., Murashima, M., Mabuchi, Y., Higuchi, T., Kawaguchi, M.: Effect of carbon diffusion on friction and wear behaviors of diamond-like carbon coating against germanium in boundary base oil lubrication. Tribol. Lett. 67, 65 (2019). CrossRefGoogle Scholar
  18. 18.
    Aboua, K.A.M., Umehara, N., Kousaka, H., Deng, X., Tasdemir, H.A., Mabuchi, Y., Higuchi, T., Kawaguchi, M.: Effect of carbon diffusion on friction and wear properties of diamond-like carbon in boundary base oil lubrication. Tribol. Int. 113, 389–398 (2017). CrossRefGoogle Scholar
  19. 19.
    Aboua, K.A.M., Umehara, N., Kousaka, H., Tokoroyama, T., Murashima, M., Mabuchi, Y., Higuchi, T., Kawaguchi, M.: Effect of carbon diffusion on friction and wear behaviors of diamond-like carbon coating against Cr-plating in boundary base oil lubrication. Tribol. Online. 13, 290–300 (2018). CrossRefGoogle Scholar
  20. 20.
    Krishtal, M.A.: Diffusion processes in iron alloys. Isr. Progr. Sci. Transl. Jerusalem. 135–137 (1970)Google Scholar
  21. 21.
    Scace, R.I., Slack, G.A.: Solubility of carbon in silicon and germanium. J. Chem. Phys. 30, 1551–1555 (1959). CrossRefGoogle Scholar
  22. 22.
    Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. USA 102, 10451–10453 (2005). CrossRefGoogle Scholar
  23. 23.
    Johra, F.T., Lee, J.W., Jung, W.G.: Facile and safe graphene preparation on solution based platform. J. Ind. Eng. Chem. 20, 2883–2887 (2014). CrossRefGoogle Scholar
  24. 24.
    Mahmoodaliofkhazraeiali, N., Milne, W.I., Ozkan, C.S., Mitura, S., Gervasoni, J.L.: Graphene Science Handbook: Fabrication Methods. CRC Press, Boca Raton (2016)Google Scholar
  25. 25.
    Anna, A., Oleg, B., Halyna, K., Egor, U., Tibor, I., Oleksander, R., Stepan, P., Alexander, K.: In situ XPS characterization of diamond films after AR + cluster ion beam sputtering. pp. 1–6 (2015)Google Scholar
  26. 26.
    Xie, F.Y., Xie, W.G., Gong, L., Zhang, W.H., Chen, S.H., Zhang, Q.Z., Chen, J.: Surface characterization on graphitization of nanodiamond powder annealed in nitrogen ambient. Surf. Interface Anal. 42, 1514–1518 (2010). CrossRefGoogle Scholar
  27. 27.
    Moulder, J.F., Stickle, W.F., Sobol, P.E., Bomben, K.D.: Handbook of X-ray photoelectron spectroscopy: a reference book of standard spectra for identification and interpretation of XPS data. Perkin-Elmer Corporation, Waltham (1992)Google Scholar
  28. 28.
    Hu, C.Q., Zheng, B., Zhu, J.Q., Han, J.C., Zheng, W.T., Guo, L.F.: Increasing sp3 hybridized carbon atoms in germanium carbide films by increasing the argon ion energy and germanium content. J. Phys. D. Appl. Phys. (2010). CrossRefGoogle Scholar
  29. 29.
    Han, J., Jiang, C., Zhu, J.: Non-hydrogenated amorphous germanium carbide with adjustable microstructure and properties: a potential anti-reflection and protective coating for infrared windows. Surf. Interface Anal. 45, 685–690 (2013). CrossRefGoogle Scholar
  30. 30.
    Yang, D., Velamakanni, A., Bozoklu, G., Park, S., Stoller, M., Piner, R.D., Stankovich, S., Jung, I., Field, D.A., Ventrice, C.A., Ruoff, R.S.: Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon N. Y. 47, 145–152 (2009). CrossRefGoogle Scholar
  31. 31.
    Mérel, P., Tabbal, M., Chaker, M., Moisa, S., Margot, J.: Direct evaluation of the sp3 content in diamond-like-carbon films by XPS. Appl. Surf. Sci. 136, 105–110 (1998). CrossRefGoogle Scholar
  32. 32.
    Díaz, J., Paolicelli, G., Ferrer, S., Comin, F.: Separation of the sp3 and sp2 components in the C1s photoemission spectra of amorphous carbon films. Phys. Rev. B. 54, 8064–8069 (1996). CrossRefGoogle Scholar
  33. 33.
    Lee, W.H., Lee, J.G., Reucroft, P.J.: XPS study of carbon fiber surfaces treated by thermal oxidation in a gas mixture of O2/(O2 + N2). Appl. Surf. Sci. 171, 136–142 (2001). CrossRefGoogle Scholar
  34. 34.
    Papirer, E., Lacroix, R., Donnet, J., Nanse, G., Fioux, P.: XPS study of the halogenation of carbon black - Part 1. Bromination. Carbon N. Y. 32, 1341–1358 (1994)CrossRefGoogle Scholar
  35. 35.
    Lee, J.-M., Kim, J.-W., Lim, J.-S., Kim, T.-J., Kim, S.-D., Park, S., Lee, Y.: X-ray Photoelectron spectroscopy study of cobalt supported multi-walled carbon nanotubes prepared by different precursors. Carbon Lett. 8, 120–126 (2007)CrossRefGoogle Scholar
  36. 36.
    Chen, Y., Zhang, L.: Polishing of Diamond Materials. Springer, London (2013)CrossRefGoogle Scholar
  37. 37.
    Campbell, F.C., Flake, C.: Elements of Metallurgy and Engineering Alloys. ASM International, Materials Park (2008)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2020

Authors and Affiliations

  • Kouami Auxence Melardot Aboua
    • 1
    Email author
  • Noritsugu Umehara
    • 1
  • Hiroyuki Kousaka
    • 2
  • Takayuki Tokoroyama
    • 1
  • Motoyuki Murashima
    • 1
  • Mohd Muhyiddin Bin Mustafa
    • 1
  • Yutaka Mabuchi
    • 3
  • Tsuyoshi Higuchi
    • 3
  • Masahiro Kawaguchi
    • 4
  1. 1.Department of Mechanical Science and Engineering, Graduate School of EngineeringNagoya UniversityNagoyaJapan
  2. 2.Departement of Mechanical Engineering, Faculty of EngineeringGifu UniversityGifuJapan
  3. 3.Nissan Motor Co.YokohamaJapan
  4. 4.Tokyo Metropolitan Industrial Technology Research InstituteTokyoJapan

Personalised recommendations