Advertisement

Tribology Letters

, 68:4 | Cite as

Experiment to Investigate the Relationship Between the Third-Body Layer and the Occurrence of Squeals in Dry Sliding Contact

  • Narinder Singla
  • Jean-François BrunelEmail author
  • Alexandre Mège-Revil
  • Haytam Kasem
  • Yannick Desplanques
Original Paper
  • 91 Downloads

Abstract

Braking is an energy dissipation mechanism used to restrict the movement of vehicles. Friction brakes may induce vibrations and noise. These effects constitute a major shortcoming related to the functioning of friction braking systems. Known as brake squeal, this phenomenon involves unstable vibrations induced by coupling modes between components in frictional contact leading to large amplitude vibrations. Despite significant progress in experimental techniques and numerical modeling, the origin of squeal occurrence remains misunderstood and is still a matter of debate. It is, however, commonly admitted that squeal is affected by many different factors on both micro and macro scales. In addition, a close correlation between wear and squeal occurrence in braking system has been reported. This study examines linking the change in the third-body layer with the occurrence of squeals in sliding dry contact. A simplified customized test rig was used with a transparent glass disc and an artificial alumina third-body. Results show that squeal occurrence is strongly linked to the densification and redistribution of the third-body, as well as internal flows in the interface.

Keywords

Brake squeal Friction-induced vibrations Tribological circuit Third-body flows 

List of Symbols

Qs (ext)

External third-body source flow

Qs (int)

Internal third-body source flow

Qe

Particles wear-out

Qr

Third-body recirculation flow

Qi

Internal third-body flow

Notes

Acknowledgements

The present research work has been supported by the ELSAT2020 project co-financed by the European Union with the European Regional Development Fund, the French State and the Hauts de France Region Council. The authors gratefully acknowledge the support of these institutions.

References

  1. 1.
    Dufrénoy, P., Bodovillé, G., Degallaix, G.: Damage mechanisms and thermomechanical loading of brake discs. Eur. Struct. Integr. Soc. 29, 167–176 (2002).  https://doi.org/10.1016/S1566-1369(02)80073-5 CrossRefGoogle Scholar
  2. 2.
    Lee, K., Barber, J.R.: An experimental investigation of frictionally-excited thermoelastic instability in automotive disk brakes under a drag brake application. J. Tribol. 116, 409–414 (1994)CrossRefGoogle Scholar
  3. 3.
    Österle, W., Dörfel, I., Prietzel, C., Rooch, H., Cristol-Bulthé, A.-L., Degallaix, G., Desplanques, Y.: A comprehensive microscopic study of third body formation at the interface between a brake pad and brake disc during the final stage of a pin-on-disc test. Wear 267, 781–788 (2009).  https://doi.org/10.1016/j.wear.2008.11.023 CrossRefGoogle Scholar
  4. 4.
    Kasem, H., Bonnamy, S., Rousseau, B., Estrade-Szwarckopf, H., Berthier, Y., Jacquemard, P.: Interdependence between wear process, size of detached particles and CO2 production during carbon/carbon composite friction. Wear 263, 1220–1229 (2007).  https://doi.org/10.1016/j.wear.2007.01.077 CrossRefGoogle Scholar
  5. 5.
    Ozcan, S., Filip, P.: Microstructure and wear mechanisms in C/C composites. Wear 259, 642–650 (2005).  https://doi.org/10.1016/j.wear.2005.02.112 CrossRefGoogle Scholar
  6. 6.
    Mortelette, L., Brunel, J.F., Boidin, X., Desplanques, Y., Dufrénoy, P., Smeets, L.: Impact of mineral fibres on brake squeal occurrences. SAE International 2009 Brake Colloquium and Exhibition. SAE International, USA (2009).  https://doi.org/10.4271/2009-01-3050 Google Scholar
  7. 7.
    Massi, F., Berthier, Y., Baillet, L.: Contact surface topography and system dynamics of brake squeal. Wear 265, 1784–1792 (2008).  https://doi.org/10.1016/j.wear.2008.04.049 CrossRefGoogle Scholar
  8. 8.
    Akay, A.: Acoustics of friction. J. Acoust. Soc. Am. 111, 1525 (2002).  https://doi.org/10.1121/1.1456514 CrossRefGoogle Scholar
  9. 9.
    Massi, F., Baillet, L., Giannini, O., Sestieri, A.: Brake squeal: linear and nonlinear numerical approaches. Mech. Syst. Signal Process. 21, 2374–2393 (2007).  https://doi.org/10.1016/j.ymssp.2006.12.008 CrossRefGoogle Scholar
  10. 10.
    Kinkaid, N.M., O’Reilly, O.M., Papadopoulos, P.: Automotive disc brake squeal. J. Sound Vib. 267, 105–166 (2003).  https://doi.org/10.1016/S0022-460X(02)01573-0 CrossRefGoogle Scholar
  11. 11.
    Ouyang, H., Nack, W., Yuan, Y., Chen, F.: Numerical analysis of automotive disc brake squeal: a review. Int. J. Veh. Noise Vib. 1, 207–231 (2005).  https://doi.org/10.1504/IJVNV.2005.007524 CrossRefGoogle Scholar
  12. 12.
    Giannini, O., Akay, A., Massi, F.: Experimental analysis of brake squeal noise on a laboratory brake setup. J. Sound Vib. 292, 1–20 (2006).  https://doi.org/10.1016/j.jsv.2005.05.032 CrossRefGoogle Scholar
  13. 13.
    Conglin, D., Jiliang, M., Chengqing, Y., Xiuqin, B., Tian, Y.: Vibration and noise behaviors during stick—slip friction. Tribol. Lett. (2019).  https://doi.org/10.1007/s11249-019-1216-1 CrossRefGoogle Scholar
  14. 14.
    Massi, F., Giannini, O., Baillet, L.: Brake squeal as dynamic instability: an experimental investigation. J. Acoust. Soc. Am. 120, 1388–1398 (2006).  https://doi.org/10.1121/1.2228745 CrossRefGoogle Scholar
  15. 15.
    Bonnay, K., Magnier, V., Brunel, J.F., Dufrénoy, P., De Saxcé, G.: Influence of geometry imperfections on squeal noise linked to mode lock-in. Int. J. Solids Struct. 75–76, 99–108 (2015).  https://doi.org/10.1016/j.ijsolstr.2015.08.004 CrossRefGoogle Scholar
  16. 16.
    Godet, M.: The third-body approach: A mechanical view of wear. Wear 100, 437–452 (1984).  https://doi.org/10.1016/0043-1648(84)90025-5 CrossRefGoogle Scholar
  17. 17.
    Berthier, Y.: Maurice Godet’s third body. Tribol. Ser. 31, 21–30 (1996).  https://doi.org/10.1016/S0167-8922(08)70766-1 CrossRefGoogle Scholar
  18. 18.
    Jacko, M.G., Tsang, P.H.S., Rhee, S.K.: Wear debris compaction and friction film formation of polymer composites. Wear 133, 23–38 (1989).  https://doi.org/10.1016/0043-1648(89)90110-5 CrossRefGoogle Scholar
  19. 19.
    Österle, W., Urban, I.: Friction layers and friction films on PMC brake pads. Wear 257, 215–226 (2004).  https://doi.org/10.1016/j.wear.2003.12.017 CrossRefGoogle Scholar
  20. 20.
    Eriksson, M., Lord, J., Jacobson, S.: Wear and contact conditions of brake pads: dynamical in situ studies of pad on glass. Wear 249, 272–278 (2001).  https://doi.org/10.1016/S0043-1648(01)00573-7 CrossRefGoogle Scholar
  21. 21.
    Desplanques, Y., Degallaix, G.: Interactions between third-body flows and localisation phenomena during railway high-energy stop braking. SAE Int. J. Passeng. Cars Mech. Syst. 1, 1267–1275 (2008).  https://doi.org/10.4271/2008-01-2583 CrossRefGoogle Scholar
  22. 22.
    Desplanques, Y., Degallaix, G.: Genesis of the third-body at the pad-disc interface: case study of sintered metal matrix composite lining material. SAE Int. J. Mater. Manf. 2, 25–32 (2009).  https://doi.org/10.4271/2009-01-3053 CrossRefGoogle Scholar
  23. 23.
    Lee, S., Jang, H.: Effect of plateau distribution on friction instability of brake friction materials. Wear 400–401, 1–9 (2018).  https://doi.org/10.1016/j.wear.2017.12.015 CrossRefGoogle Scholar
  24. 24.
    Bergman, F., Eriksson, M., Jacobson, S.: Influence of disc topography on generation of brake squeal. Wear 225–229, 621–628 (1999).  https://doi.org/10.1016/S0043-1648(99)00064-2 CrossRefGoogle Scholar
  25. 25.
    Rhee, S.K., Jacko, M.G., Tsang, P.H.S.: The role of friction film in friction, wear and noise of automotive brakes. Wear 146, 89–97 (1991).  https://doi.org/10.1016/0043-1648(91)90226-K CrossRefGoogle Scholar
  26. 26.
    Hetzler, H., Willner, K.: On the influence of contact tribology on brake squeal. Tribol. Int. 46, 237–246 (2012).  https://doi.org/10.1016/j.triboint.2011.05.019 CrossRefGoogle Scholar
  27. 27.
    Magnier, V., Naidoo Ramasami, D., Brunel, J.F., Dufrénoy, P., Chancelier, T.: History effect on squeal with a mesoscopic approach to friction materials. Tribol. Int. 115, 600–607 (2017).  https://doi.org/10.1016/j.triboint.2017.06.031 CrossRefGoogle Scholar
  28. 28.
    Richard, D., Iordanoff, I., Renouf, M., Berthier, Y.: Thermal study of the dry sliding contact with third body presence. J. Tribol. 130, 031404 (2008).  https://doi.org/10.1115/1.2913540 CrossRefGoogle Scholar
  29. 29.
    Müller, M., Ostermeyer, G.P.: A Cellular Automaton model to describe the three-dimensional friction and wear mechanism of brake systems. Wear 263, 1175–1188 (2007).  https://doi.org/10.1016/j.wear.2006.12.022 CrossRefGoogle Scholar
  30. 30.
    Ostermeyer, G.P., Müller, M.: New insights into the tribology of brake systems. Proc. Inst. Mech. Eng. Part D 222, 1167–1200 (2008). https://doi.org/10.1243/09544070JAUTO595 CrossRefGoogle Scholar
  31. 31.
    Österle, W., Orts-gil, G., Gross, T., Deutsch, C., Hinrichs, R., Vasconcellos, M.A.Z.: Impact of high energy ball milling on the nanostructure of magnetite—graphite and magnetite—graphite—molybdenum disulphide blends. Mater. Charact. 86, 28–38 (2013).  https://doi.org/10.1016/j.matchar.2013.09.007 CrossRefGoogle Scholar
  32. 32.
    Dmitriev, A. I., Österle, W.: Modelling the sliding behaviour of tribofilms forming during automotive braking: impact of loading parameters and property range of constituents. Tribol. Lett. 53, 337–351 (2013).  https://doi.org/10.1007/s11249-013-0274-z CrossRefGoogle Scholar
  33. 33.
    Magnier, V., Brunel, J.F., Dufrénoy, P.: Impact of contact stiffness heterogeneities on friction-induced vibration. Int. J. Solids Struct. 51, 1662–1669 (2014).  https://doi.org/10.1016/j.ijsolstr.2014.01.005 CrossRefGoogle Scholar
  34. 34.
    Kasem, H., Bonnamy, S., Berthier, Y., Jacquemard, P.: Characterization of surface grooves and scratches induced by friction of C/C composites at low and high temperatures. Tribol. Int. 43, 1951–1959 (2010).  https://doi.org/10.1016/j.triboint.2010.03.004 CrossRefGoogle Scholar
  35. 35.
    Cristol-Bulthé, A.-L., Desplanques, Y., Degallaix, G.: Coupling between friction physical mechanisms and transient thermal phenomena involved in pad–disc contact during railway braking. Wear 263, 1230–1242 (2007).  https://doi.org/10.1016/j.wear.2006.12.052 CrossRefGoogle Scholar
  36. 36.
    Davin, E., Cristol, A., Brunel, J., Desplanques, Y.: Wear mechanisms alteration at braking interface through atmosphere modification. Wear 426–427, 1094–1101 (2019).  https://doi.org/10.1016/j.wear.2019.01.057 CrossRefGoogle Scholar
  37. 37.
    Duboc, M., Magnier, V., Brunel, J., Dufrénoy, P., Chancelier, T.: Influence of contact conditions and pad geometry on disc brake squeal noise. In: European Conference on Braking, JEF2010. pp. 247–254 (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Narinder Singla
    • 1
  • Jean-François Brunel
    • 1
    Email author
  • Alexandre Mège-Revil
    • 1
  • Haytam Kasem
    • 2
    • 3
  • Yannick Desplanques
    • 1
  1. 1.Univ. Lille, CNRS, Centrale Lille, FRE 2016 – LaMcube – Laboratoire de mécanique multiphysique multiéchelleLilleFrance
  2. 2.Department of Mechanical Engineering, TechnionHaifaIsrael
  3. 3.Department of Mechanical EngineeringAzrieli College of EngineeringJerusalemIsrael

Personalised recommendations