Advertisement

Tribology Letters

, 68:5 | Cite as

Tribological Behavior of Film Forming Organosilane/-Siloxane Oil Additives: Film Characterization and Influences on Lubrication

  • Benjamin JuretzkaEmail author
  • Stephan Wieber
  • Roland Wilkens
  • Michael Hagemann
  • Robert Kolb
  • Ralf Riedel
Original Paper
  • 57 Downloads

Abstract

Vinyltrimethoxysilane monomer and oligomer film former were investigated as oil additives in terms of their tribological as well as their tribochemical behavior. The additives were dissolved in mineral oil and tested in different tribometers to evaluate the influences on friction, wear, lubricating film thickness and to track the film formation. The obtained reaction films from the friction tests were analyzed upon their morphology and chemical structure. It was found that organosilane/-siloxane molecules can deposit in a multi-layered film architecture, consisting of a polymeric layer on top of a glass-like coating. The glass-like tribofilm is adhesive, while the polymeric layer is weakly cross-linked and viscous. Depending on film structure, friction and wear can be reduced by more than 40%.

Keywords

Tribochemistry Lubrication Additive Chemical analysis 

Notes

Acknowledgements

The authors thank Evonik Industries AG, Resource Efficiency for the financial support. The authors would also like to thank Dr. Philipp Albert (Evonik) for providing the samples and discussions. Finally, the authors would also like to thank Günter Schmitt (Evonik) for supplying the tribological test equipment.

References

  1. 1.
    Michaelis, K., Höhn, B., Hinterstoißer, M.: Influence factors on gearbox power loss. Ind. Lubr. Tribol. 63(1), 46–55 (2011).  https://doi.org/10.1108/00368791111101830 CrossRefGoogle Scholar
  2. 2.
    Evans, S.D.: Delivering axle efficiency and fuel economy through optimised fluid design. SAE Int. (2014).  https://doi.org/10.4271/2014-01-2799 CrossRefGoogle Scholar
  3. 3.
    Minami, I.: Ionic liquids in tribology. Molecules 14(6), 2286–2305 (2009).  https://doi.org/10.3390/molecules14062286 CrossRefGoogle Scholar
  4. 4.
    Dai, W., Kheireddin, B., Gao, H., Liang, H.: Roles of nanoparticles in oil lubrication. Tribol. Int. 102, 88–98 (2016).  https://doi.org/10.1016/j.triboint.2016.05.020 CrossRefGoogle Scholar
  5. 5.
    Spikes, H.: Friction modifier additives. Tribol. Lett. 60(5), 1–26 (2015).  https://doi.org/10.1007/s11249-015-0589-z CrossRefGoogle Scholar
  6. 6.
    Banerjee, D.A., Kessman, A.J., Cairns, D.R., Sierros, K.A.: Tribology of silica nanoparticle-reinforced, hydrophobic sol–gel composite coatings. Surf. Coat. Technol. 260, 214–219 (2014).  https://doi.org/10.1016/j.surfcoat.2014.07.091 CrossRefGoogle Scholar
  7. 7.
    Wang, D., Bierwagen, G.P.: Sol–gel coatings on metals for corrosion protection. Prog. Org. Coat. 64(4), 327–338 (2009).  https://doi.org/10.1016/j.porgcoat.2008.08.010 CrossRefGoogle Scholar
  8. 8.
    Gläsel, H., Bauer, F., Ernst, H., Findeisen, M., Hartmann, E., Langguth, H., Mehnert, R., Schubert, R.: Preparation of scratch and abrasion resistant polymeric nanocomposites by monomer grafting on to nanoparticles. Macromol. Chem. Phys. 201, 2765–2770 (2000)CrossRefGoogle Scholar
  9. 9.
    Brinker, C.J., Scherer, G.W.: Sol-Gel Science. Elsevier Science Publishing Co Inc., New York (1990)Google Scholar
  10. 10.
    Colombo, P., Mera, G., Riedel, R., Sorarù, G.D.: Polymer-derived ceramics: 40 years of research and innovation in advanced ceramics. J. Am. Ceram. Soc. (2010).  https://doi.org/10.1111/j.1551-2916.2010.03876.x CrossRefGoogle Scholar
  11. 11.
    Morales, W., Fusaro, R.L., Siebert, M., Keith, T., Jansen, R., Herrera-Fierro, P.: A new antiwear additive/surface pretreatment for PFPE liquid lubricants. NASA TM. 107038 (1995)Google Scholar
  12. 12.
    Yu, L.G., Yamaguchi, E.S., Kasrai, M., Bancroft, G.M.: Study of silane-based antiwear additives: wear and chemistry. Tribol. Int. 44(6), 692–701 (2011).  https://doi.org/10.1016/j.triboint.2010.03.005 CrossRefGoogle Scholar
  13. 13.
    Nyberg, E., Respantiningish, C.Y., Minami, I.: Molecular design of advanced lubricant base fluids: hydrocarbon-mimicking ionic liquids. RSC Adv. 7, 6364–6373 (2017).  https://doi.org/10.1039/C6RA27065D CrossRefGoogle Scholar
  14. 14.
    Hansen, J., Björling, M., Minami, I., Larsson, R.: Performance and mechanisms of silicate tribofilm in heavily loaded rolling/sliding non-conformal contacts. Tribol. Int. 123, 130–141 (2018).  https://doi.org/10.1016/j.triboint.2018.03.006 CrossRefGoogle Scholar
  15. 15.
    Mang, T., Dresel, W. (eds.): Lubricants and Lubrication. Wiley-VCH, Weinheim (2007)Google Scholar
  16. 16.
    Willis, R.F.: The formation of polysiloxane films on metal surfaces and their lubricating properties. Tribology 2, 175–178 (1969)CrossRefGoogle Scholar
  17. 17.
    Tabor, D., Willis, R.F.: The formation of silicone polymer films on metal surfaces at high temperatures and their boundary lubricating properties. Wear 13(6), 413–442 (1969).  https://doi.org/10.1016/0043-1648(69)90021-0 CrossRefGoogle Scholar
  18. 18.
    Kuribayashi, T., Yamamoto, Y.: Effect of friction and wear on formation of polysiloxane films at iron oxide surface in viscous couplings. Tribol. Trans. 43(4), 579–586 (2000).  https://doi.org/10.1080/10402000008982381 CrossRefGoogle Scholar
  19. 19.
    Taylor, L.J., Spikes, H.A.: Friction-enhancing properties of ZDDP antiwear additive: part I—friction and morphology of ZDDP reaction films. Tribol. Trans. 46(3), 303–309 (2003).  https://doi.org/10.1080/10402000308982630 CrossRefGoogle Scholar
  20. 20.
    Cann, P.M., Spikes, H.A., Hutchinson, J.: The development of a spacer layer imaging method (SLIM) for mapping elastohydrodynamic contacts. Tribol. Trans. 39(4), 915–921 (1996).  https://doi.org/10.1080/10402009608983612 CrossRefGoogle Scholar
  21. 21.
    Green, D.A., Lewis, R.: The effects of soot-contaminated engine oil on wear and friction: a review. Proc. Inst. Mech. Eng. D 222(9), 1669–1689 (2008).  https://doi.org/10.1243/09544070jauto468 CrossRefGoogle Scholar
  22. 22.
    Smeeth, M., Spikes, H.A., Gunsel, S.: The formation of viscous surface films by polymer solutions: boundary or elastohydrodynamic lubrication? Tribol. Trans. 39(3), 720–725 (1996).  https://doi.org/10.1080/10402009608983589 CrossRefGoogle Scholar
  23. 23.
    Launer, P.J., Arkles, U.b.B.: Infrared Analysis of Organosilicon Compounds: Spectra-Structure Correlations. Reprinted from Silicon Compounds: Silanes & Silicones, 2013 Gelest, Inc Morrisville, PA, 175–178.Google Scholar
  24. 24.
    Ishida, H., Koenig, J.L.: Vibrational assignments of organosilanetriols. I. Vinylsilanetriol and vinylsilanetriol-D3 in aqueous solutions. Appl. Spectrosc. 32(5), 462–469 (2016).  https://doi.org/10.1366/000370278774330919 CrossRefGoogle Scholar
  25. 25.
    Li, Y.S., Wright, P.B., Puritt, R., Tran, T.: Vibrational spectroscopic studies of vinyltriethoxysilane sol-gel and its coating. Spectrochim. Acta. A 60(12), 2759–2766 (2004).  https://doi.org/10.1016/j.saa.2003.12.047 CrossRefGoogle Scholar
  26. 26.
    Primeau, N., Vautey, C., Langlet, M.: The effect of thermal annealing on aerosol-gel deposited SiO2 films a FTIR deconvolution study. Thin Solid Films 310, 47–56 (1997)CrossRefGoogle Scholar
  27. 27.
    Adhvaryu, A., Sharma, Y.K., Singh, I.D.: Studies on the oxidative behavior of base oils and their chromatographic fractions. Fuel 78, 1293–1302 (1999)CrossRefGoogle Scholar
  28. 28.
    Sorarù, G.D., Karakuscu, A., Boissiere, C., Babonneau, F.: On the shrinkage during pyrolysis of thin films and bulk components: The case of a hybrid silica gel precursor for SiOC glasses. J. Eur. Ceram. Soc. 32(3), 627–632 (2012).  https://doi.org/10.1016/j.jeurceramsoc.2011.10.004 CrossRefGoogle Scholar
  29. 29.
    Zanchetta, E., Cattaldo, M., Franchin, G., Schwentenwein, M., Homa, J., Brusatin, G., Colombo, P.: Stereolithography of SiOC ceramic microcomponents. Adv. Mater. 28(2), 370–376 (2016).  https://doi.org/10.1002/adma.201503470 CrossRefGoogle Scholar
  30. 30.
    Furey, M.J.: The formation of polymeric films directly on rubbing surfaces to reduce wear. Wear 26(3), 369–392 (1973)CrossRefGoogle Scholar
  31. 31.
    Taylor, L.J., Spikes, H.A.: Friction-enhancing properties of ZDDP antiwear additive: part II—influence of ZDDP reaction films on EHD lubrication. Tribol. Trans. 46(3), 310–314 (2003).  https://doi.org/10.1080/10402000308982631 CrossRefGoogle Scholar
  32. 32.
    Miklozic, K.T., Forbus, T.R., Spikes, H.A.: Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 50(3), 328–335 (2008).  https://doi.org/10.1080/10402000701413505 CrossRefGoogle Scholar
  33. 33.
    Müller, M., Topolovec-Miklozic, K., Dardin, A., Spikes, H.A.: The design of boundary film-forming PMA viscosity modifiers. Tribol. Trans. 49(2), 225–232 (2006).  https://doi.org/10.1080/05698190600614833 CrossRefGoogle Scholar
  34. 34.
    Anghel, V., Bovington, C., Spikes, H.A.: Thick-boundary-film formation by friction modifier additives. Lubr. Sci. 11(4), 313–335 (1999)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Fachgebiet Disperse Feststoffe, Fachbereich Material und GeowissenschaftenTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Evonik Resource Efficiency GmbH, Oil AdditivesDarmstadtGermany

Personalised recommendations