Advertisement

Tribology Letters

, 67:118 | Cite as

In-Situ Synthesis Strategy of Monodispersed Ag2S Nanoparticles to Modify Wear Resistance of Polyamide-imide Nanocomposite Lubricating Coatings

  • Yanjun Ma
  • Yinping YeEmail author
  • Hongqi WanEmail author
  • Lei Chen
  • Huidi Zhou
  • Jianmin ChenEmail author
Original Paper
  • 102 Downloads

Abstract

A novel in-situ-synthesis strategy via one-pot thermal decomposition of a single-source precursor was developed to fabricate silver sulfide (Ag2S) nanoparticles with monodispersity and narrow size distribution in the polyamide-imide (PAI) nanocomposite coatings. The crystalline phases, size, morphologies, and growth mechanism of the in-situ-synthesized Ag2S nanoparticles were characterized by X-ray diffraction, ultrahigh-resolution field emission scanning electron microscopy, Fourier transform infrared spectroscopy, and thermogravimetric analysis. The enhancement effect of such in-situ-synthesized Ag2S nanoparticles on the microhardness and tribological behaviors of the PAI nanocomposite coatings were also investigated and compared with mechanically mixed Ag2S particles. Results show that the growth of Ag2S particles is greatly limited during the in-situ preparation process. The Ag2S nanoparticles with small size ranging from 100 to 130 nm are purely formed and exhibit monodispersibility in the PAI nanocomposite coatings. Besides, the appropriate Ag2S nanoparticles greatly promote the microhardness and antiwear performance of the PAI nanocomposite coatings, especially when their incorporation content reaches 5.0 wt%. The enhancement effects of these in-situ-synthesized Ag2S nanoparticles on microhardness and wear resistance of PAI nanocomposite coatings are superior to that of the mechanically mixed Ag2S particles. This is attributed to the improvement of cohesion strength and the load-carrying capacity of the PAI nanocomposite coatings enhanced by in-situ-synthesized Ag2S nanoparticles.

Keywords

In-situ synthesis Ag2S nanoparticles Monodisperse Wear resistance Nanocomposites 

Notes

Acknowledgements

This study was financially supported by The National Natural Science Foundation of China (Grant Nos. 51775533 and 51305430). The authors are very grateful to Dr. Y. G. Chao and Dr. F. Yue for their help in the characterization of FESEM.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

Supplementary material

11249_2019_1231_MOESM1_ESM.docx (2 mb)
Electronic supplementary material 1 (DOCX 2060 kb)

References

  1. 1.
    Ravindran, K.A., Ramasamy, P., Laddha, G.S.: Frictional behaviour of bonded solid film lubricants. Wear 71, 153–159 (1981)Google Scholar
  2. 2.
    Xu, J., Zhou, Z.R., Zhang, C.H., Zhu, M.H., Luo, J.B.: An investigation of fretting wear behaviors of bonded solid lubricant coatings. J. Mater. Process. Technol. 182, 146–151 (2007)Google Scholar
  3. 3.
    Chen, B.B., Li, X.F., Li, X., Jia, Y.H., Yang, J., Yang, G.B., Li, C.S.: Friction and wear properties of polyimide-based composites with a multiscale carbon fiber-carbon nanotube hybrid. Tribol. Lett. 65, 1–9 (2017)Google Scholar
  4. 4.
    Ma, Y.J., Wan, H.Q., Ye, Y.P., Chen, L., Zhou, H.D., Chen, J.M.: Preparation and tribological behaviors of a novel organic-inorganic hybrid resin bonded solid lubricating coating cured by ultraviolet radiation. Prog. Org. Coat. 127, 348–358 (2019)Google Scholar
  5. 5.
    Kadiyala, A.K., Bijwe, J., Kalappa, P.: Investigations on influence of nano and micron sized particles of SiC on performance properties of PEEK coatings. Surf. Coat. Technol. 334, 124–133 (2018)Google Scholar
  6. 6.
    Wang, C.J., Wang, H.Y., Li, M.L., Liu, Z.J., Lv, C.J., Zhu, Y.J., Bao, L.Z.: Anti-corrosion and wear resistance properties of polymer composite coatings: effect of oily functional fillers. J. Taiwan Inst. Chem. E. 85, 248–256 (2018)Google Scholar
  7. 7.
    Lv, Y., Wang, W., Xie, G.X.: Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribol. Lett. 61, 1–11 (2018)Google Scholar
  8. 8.
    Yu, J.J., Zhao, W.J., Wu, Y.H., Wang, D.L., Feng, R.T.: Tribological properties of epoxy composite coatings reinforced with functionalized C-BN and H-BN nanofillers. Appl. Surf. Sci. 434, 1311–1320 (2018)Google Scholar
  9. 9.
    Ma, Y.J., Wan, H.Q., Ye, Y.P., Chen, L., Zhou, H.D., Chen, J.M.: Tribological behaviors of the UV curing polyurethane acrylate resin-polytetrafluoroethylene bonded solid lubricating coatings filled with LaF3. Prog. Org. Coat. 121, 218–225 (2018)Google Scholar
  10. 10.
    Xin, Y.S., Xu, F.L., Wang, M.M., Li, T.S.: Synergistic effects of carbon nanotube/nano-MoS2 hybrid on tribological performance of polyimide nanocomposite films. Tribol. Lett. 66, 1–18 (2018)Google Scholar
  11. 11.
    Li, B., Jiang, X.F., Wan, H.Q., Chen, L., Ye, Y.P., Zhou, H.D., Chen, J.M.: Fabrication and tribological behaviors of a novel environmental friendly water-based PAI-PTFE-LaF3 bonded solid lubricating composite coating. Tribol. Int. 121, 400–409 (2018)Google Scholar
  12. 12.
    Song, H.J., Wang, Z.Q., Yang, J., Jia, X.H., Zhang, Z.Z.: Facile synthesis of copper/polydopamine functionalized graphene oxide nanocomposites with enhanced tribological performance. Chem. Eng. J. 324, 51–62 (2017)Google Scholar
  13. 13.
    Wan, H.Q., Jia, Y.L., Ye, Y.P., Chen, L., Xu, H.Y., Cui, H.X., Zhou, H.D., Chen, J.M.: Tribological behavior of polyimide/epoxy resin-polytetrafluoroethylene bonded solid lubricant coatings filled with in situ-synthesized silver nanoparticles. Prog. Org. Coat. 106, 111–118 (2017)Google Scholar
  14. 14.
    Andrievski, R.A.: Review stability of nanostructured materials. J. Mater. Sci. 38, 1367–1375 (2003)Google Scholar
  15. 15.
    Xu, L., Liang, H.W., Li, H.H., Wang, K., Yang, Y., Song, L.T., Wang, X., Yu, S.H.: Understanding the stability and reactivity of ultrathin tellurium nanowires in solution: an emerging platform for chemical transformation and material design. Nano. Res. 8, 1081–1097 (2015)Google Scholar
  16. 16.
    Salimi, M.N., Bridson, R.H., Grover, L.M., Leeke, G.A.: Effect of processing conditions on the formation of hydroxyapatite nanoparticles. Powder Technol. 218, 109–118 (2012)Google Scholar
  17. 17.
    Sato, K., Li, J.G., Kamiya, H., Ishigaki, T.: Ultrasonic dispersion of TiO2 nanoparticles in aqueous suspension. J. Am. Ceram. Soc. 91, 2481–2487 (2008)Google Scholar
  18. 18.
    Sauter, C., Emin, M.A., Schuchmann, H.P., Tavman, S.: Influence of hydrostatic pressure and sound amplitude on the ultrasound induced dispersion and de-agglomeration of nanoparticles. Ultrason. Sonochem. 15, 517–523 (2008)Google Scholar
  19. 19.
    Takashi, O., Rizka, Z., Toru, I., Kikuo, O.: Recent progress in nanoparticles dispersion using bead mill. KONA Powder Part. J. 34, 3–23 (2017)Google Scholar
  20. 20.
    Shahar, C., Zbaida, D., Rapoport, L., Cohen, H.G., Bendikov, T., Tannous, J., Dassenoy, F., Tenne, R.: Surface functionalization of WS2 fullerene-like nanoparticles. Langmuir 26, 4409–4414 (2010)Google Scholar
  21. 21.
    Li, R.P., Cheng, Y.C., Huang, W.: Recent progress of janus 2D transition metal chalcogenides: from theory to experiments. Small 14, 2–11 (2018)Google Scholar
  22. 22.
    Huang, H., Cheng, H.M., Ye, P.D.: 2D nanomaterials: beyond graphene and transition metal dichalcogenides. Chem. Soc. Rev. 47, 6009–6012 (2018)Google Scholar
  23. 23.
    Zhang, X., Lai, Z.C., Ma, Q.L., Zhang, H.: Novel structured transition metal dichalcogenide nanosheets. Chem. Soc. Rev. 47, 3301–3338 (2018)Google Scholar
  24. 24.
    Du, Y., Xu, B., Fu, T., Cai, M., Li, F., Zhang, Y., Wang, Q.B.: Near-infrared photoluminescent Ag2S quantum dots from a single source precursor. J. Am. Chem. Soc. 132, 1470–1471 (2010)Google Scholar
  25. 25.
    Sadovnikov, S.I., Rempel, A.A., Gusev, A.I.: Nanostructured silver sulfide: synthesis of various forms and their application. Russ. Chem. Rev. 87, 303–327 (2018)Google Scholar
  26. 26.
    Yu, L.G., Liu, W.M., Xue, Q.J.: Effect of various inorganic fillers on the friction and wear behaviors of polyphenylene sulfide. J. Appl. Polym. Sci. 68, 1643–1650 (1998)Google Scholar
  27. 27.
    Guo, W.J., Lei, S., Wu, Z.S., Zhang, Z.J.: Preparation and anti-wear properties of silver sulfide nanoparticles in microemulsion. J. Inorg. Mater. 23, 960–964 (2008)Google Scholar
  28. 28.
    Bahadur, S., Zhao, Q.: A study of the modification of the friction and wear behavior of polyphenylene sulfide by particulate Ag2S and PbTe fillers. Wear 217, 62–72 (1998)Google Scholar
  29. 29.
    Sadovnikov, S.I., Gusev, A.I.: Recent progress in nanostructured silver sulfide: from synthesis and nonstoichiometry to properties. J. Mater. Chem. A 5, 17676–17704 (2017)Google Scholar
  30. 30.
    Malik, M.A., Revaprasadu, N., O’Brien, P.: Air-stable single-source precursors for the synthesis of chalcogenide semiconductor nanoparticles. Chem. Mater. 13, 913–920 (2001)Google Scholar
  31. 31.
    Motevalli, M., O’Brien, P., Walsh, J.R.: Synthesis, characterization and X-ray crystal structures of asymmetric bis(dialkyldithiocarbamates) of zinc: potential precursors for ZnS deposition. Polyhedron 15, 2801–2808 (1996)Google Scholar
  32. 32.
    Persson, N.O., Uvdal, K., Almquist, O., Engquistet, I., Kariis, H., Liedberg, B.: Adsorption of potassium O, O′-di(para-fluorophenyl) dithiophosphate on gold, silver, and copper. Langmuir 15, 8161–8169 (1999)Google Scholar
  33. 33.
    Lars, H., Richard, J.O.: N, N′-diphenyldithiocarbazic acid and some derived compounds. Acta Chem. Scand. 22, 3042–3044 (1968)Google Scholar
  34. 34.
    Lou, W.J., Wang, X.B., Chen, M., Liu, W.M., Hao, J.C.: A simple route to synthesize size-controlled Ag2S core-shell nanocrystals, and their self-assembly. Nanotechnology 19, 225607 (2008)Google Scholar
  35. 35.
    Franck, J., Rabinowitsch, E.: Some remarks about free radicals and the photochemistry of solutions. Trans. Faraday Soc. 30, 120–130 (1934)Google Scholar
  36. 36.
    Li, S., Gao, C.: Dendritic molecular brushes: synthesis via sequential RAFT polymerization and cage effect for fluorophores. Polym. Chem. 4, 4450–4460 (2013)Google Scholar
  37. 37.
    Bernini, S., Leporini, D.: Cage effect in supercooled molecular liquids: local anisotropies and collective solid-like response. J. Chem. Phys. 144, 587 (2016)Google Scholar
  38. 38.
    Huang, J., Zhang, L.J., Tang, Z.H., Wu, S.W., Ning, N.Y., Sun, H.B., Guo, B.C.: Bioinspired design of a robust elastomer with adaptive recovery via triazolinedione click chemistry. Macromol. Rapid. Commun. 38, 1600678 (2017)Google Scholar
  39. 39.
    Dinescu, A., Perrone, A., Pcaricato, L., Mirenghi, L., Gerardi, C., Ghica, C., Frunza, L.: Boron carbon nitride films deposited by sequential pulses laser deposition. Appl. Surf. Sci. 127–129, 692–696 (1998)Google Scholar
  40. 40.
    Lei, M.K., Yuan, L.J., Zhang, Z.L., Ma, T.C.: Cubic-BN-like structure of B-C-N films synthesized by plasma source ion nitriding. Chin. Phys. Lett. 16, 71–73 (1999)Google Scholar
  41. 41.
    Romano, R.M., Vedova, C.O.D., Pfeiffer, A., Mack, H.G., Oberhammer, H.: S-trifluoromethyl-disulfanyl sulfinyl imine, CF3SSNSO: structure and conformation in the electronic ground and excited states. J. Mol. Struct. 446, 127–135 (1998)Google Scholar
  42. 42.
    Hu, Z.G., Prunici, P., Patzner, P., Hess, P.: Infrared spectroscopic ellipsometry of n-alkylthiol (C5–C18) self-assembled monolayers on gold. J. Phys. Chem. B 110, 14824–14831 (2006)Google Scholar
  43. 43.
    Li, N., Liu, Q.S., Zhen, M., Zhao, B., Feng, W., Song, Y.M., Duan, Z.K., He, R.X.: Coal combustion reactivity of different metamorphic degree and structure changes of FTIR analysis in pyrolysis process. Spectrosc. Spect. Anal. 36, 2760–2765 (2016)Google Scholar
  44. 44.
    Zamiri, R., Ahangar, H.A., Zakaria, A., Zamiri, G., Shabani, M., Singh, B., Ferreira, J.M.F.: The structural and optical constants of Ag2S semiconductor nanostructure in the far-infrared. Chem. Cent. J. 9, 28 (2015)Google Scholar
  45. 45.
    Krylova, V., Dukštienė, N.: Synthesis and characterization of Ag2S layers formed on polypropylene. J. Chem. 2013, 11 (2013)Google Scholar
  46. 46.
    Kim, B.J., Kang, K.S.: Fabrication of a crack-free large area photonic crystal with colloidal silica spheres modified with vinyltriethoxysilane. Cryst. Growth Des. 12, 4039–4042 (2012)Google Scholar
  47. 47.
    Bowden, F.P., Tabor, D.F.: The friction and lubrication of solids. Am. J. Phys. 21, 1–8 (1964)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China
  2. 2.Center of Materials Science and Optoelectronics EngineeringUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China

Personalised recommendations