Advertisement

Tribology Letters

, 67:104 | Cite as

The Role of Grease Composition and Rheology in Elastohydrodynamic Lubrication

  • Mohd. Mubashshir
  • Asima ShaukatEmail author
Original Paper
  • 247 Downloads

Abstract

Grease lubrication is inherently complicated due to its non-Newtonian flow dynamics. The flow behavior of grease is difficult to determine under tribological shear rates as these shear rates are often extremely high, and therefore, are not accessible on a regular rheometer. In this work, we demonstrate the use of shear rate-concentration superposition method to extrapolate the data measured with a rheometer to tribologically relevant shear rates. This method is similar to the other superposition methods routinely employed by rheologists for predicting flow behavior beyond the measurement range of rheometer. In this method, a data master curve, which extends over a broad range of shear rates, is constructed by superposing individual flow curves for greases with different thickener concentrations. The master curve is utilized to determine infinite shear viscosity of grease which is then used for the film thickness estimation. Furthermore, the grease samples are tribologically tested using a four-ball tester to identify the individual and interactive roles of the thickener type, concentration and base oil in lubrication behavior. A change in thickener concentration or type influences frictional torque and wear scar size through modification in infinite shear viscosity and structural stability of grease. The SEM images show deposition of thickener particles on the contact surface, which also apparently affect friction and wear during the test. The lubrication performance is strongly influenced by base oil, which points towards the importance of its role in dictating flow resistance and film-forming behavior of grease inside elastohydrodynamic contact.

Keywords

Grease lubrication Elastohydrodynamic film thickness Rheology Wear Friction 

Notes

Acknowledgements

This work is supported by Early Career Research Award (ECR/2016/000228), Science and Engineering Research Board, Department of Science and Technology, Government of India; INSPIRE Faculty award (DST/INSPIRE/04/2014/001055), Department of Science and Technology, Government of India; and Additional Competitive Grant (GOA/ACG/2014-15/Aug/03), BITS Pilani, K. K. Birla Goa campus, India.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflicts of interest.

References

  1. 1.
    Delgado, M.A., Sánchez, M.C., Valencia, C., Franco, J.M., Gallegos, C.: Relationship among microstructure, rheology and processing of a lithium lubricating grease. Chem. Eng. Res. Des. 83, 1085–1092 (2005).  https://doi.org/10.1205/cherd.04311 CrossRefGoogle Scholar
  2. 2.
    Roman, C., Valencia, C., Franco, J.M.: AFM and SEM assessment of lubricating grease microstructures: influence of sample preparation protocol, frictional working conditions and composition. Tribol. Lett. 63, 20 (2016).  https://doi.org/10.1007/s11249-016-0710-y CrossRefGoogle Scholar
  3. 3.
    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. J. Lubr. Technol. 99, 264 (1977).  https://doi.org/10.1115/1.3453074 CrossRefGoogle Scholar
  4. 4.
    Kauzlarich, J.J., Greenwood, J.A.: Elastohydrodynamic lubrication with Herschel–Bulkley model greases. ASLE Trans. 15, 269–277 (1972).  https://doi.org/10.1080/05698197208981427 CrossRefGoogle Scholar
  5. 5.
    Jonkisz, W., Krzemiński-Freda, H.: Pressure distribution and shape of an elastohydro-dynamic grease film. Wear 55, 81–89 (1979).  https://doi.org/10.1016/0043-1648(79)90181-9 CrossRefGoogle Scholar
  6. 6.
    Cheng, J.: Elastohydrodynamic grease lubrication theory and numerical solution in line contacts. Tribol. Trans. 37, 711–718 (1994).  https://doi.org/10.1080/10402009408983350 CrossRefGoogle Scholar
  7. 7.
    Karthikeyan, B.K., Teodorescu, M., Rahnejat, H., Rothberg, S.J.: Thermoelastohydrodynamics of grease-lubricated concentrated point contacts. Proc. Inst. Mech. Eng. Part C 224, 683–695 (2010).  https://doi.org/10.1243/09544062jmes1748 CrossRefGoogle Scholar
  8. 8.
    Yoo, J.G., Kim, K.W.: Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel–Bulkley model. Tribol. Int. 30, 401–408 (1997).  https://doi.org/10.1016/S0301-679X(96)00069-2 CrossRefGoogle Scholar
  9. 9.
    Wada, S., Hayashi, H., Haga, K., Kawakami, Y., Okajima, M.: Elastohydrodynamic lubrication of a Bingham solid. Bull. JSME. 20, 110–115 (1977).  https://doi.org/10.1299/jsme1958.20.110 CrossRefGoogle Scholar
  10. 10.
    Yang, Z., Qian, X.: A study of grease film thickness in elastorheodynamic rolling point contacts. ImechE Conf. Publ. 1, 97–104 (1987)Google Scholar
  11. 11.
    Palacios, J.M., Palacios, M.P.: Rheological properties of greases in EHD contacts. Tribol. Int. 17, 167–171 (1984).  https://doi.org/10.1016/0301-679X(84)90010-0 CrossRefGoogle Scholar
  12. 12.
    Dong, D., Qian, X.: A theory of elastohydrodynamic grease-lubricated line contact based on a refined rheological model. Tribol. Int. 21, 261–267 (1988).  https://doi.org/10.1016/0301-679X(88)90003-5 CrossRefGoogle Scholar
  13. 13.
    Kochi, T., Ichimura, R., Yoshihara, M., Dong, D., Kimura, Y.: Film thickness and traction in soft EHL with grease. J. Jpn. Soc. Tribol. 12, 171–176 (2017)Google Scholar
  14. 14.
    Bordenet, L., Dalmaz, G., Chaomleffel, J.-P., Vergne, F.: A study of grease film thicknesses in elastorheodynamic rolling point contacts. Lubr. Sci. 2, 273–284 (1990).  https://doi.org/10.1002/ls.3010020402 CrossRefGoogle Scholar
  15. 15.
    Cyriac, F., Lugt, P.M., Bosman, R., Padberg, C.J., Venner, C.H.: Effect of thickener particle geometry and concentration on the grease EHL film thickness at medium speeds. Tribol. Lett. 61, 18 (2016).  https://doi.org/10.1007/s11249-015-0633-z CrossRefGoogle Scholar
  16. 16.
    Cann, P.M., Williamson, B.P., Coy, R.C., Spikes, H.A.: The behaviour of greases in elastohydrodynamic contacts. J. Phys. D 25, A124–A132 (1992).  https://doi.org/10.1088/0022-3727/25/1A/020 CrossRefGoogle Scholar
  17. 17.
    Poon, S.Y.: An experimental study of grease in elastohydrodynamic lubrication. J. Lubr. Technol. 94, 27 (1972).  https://doi.org/10.1115/1.3451631 CrossRefGoogle Scholar
  18. 18.
    Jonkisz, W., Krzeminski-Freda, H.: The properties of elastohydrodynamic grease films. Wear 77, 277–285 (1982).  https://doi.org/10.1016/0043-1648(82)90053-9 CrossRefGoogle Scholar
  19. 19.
    Kaneta, M., Ogata, T., Takubo, Y., Naka, M.: Effects of a thickener structure on grease elastohydrodynamic lubrication films. Proc. Inst. Mech. Eng. Part J 214, 327–336 (2000).  https://doi.org/10.1243/1350650001543214 CrossRefGoogle Scholar
  20. 20.
    Åström, H., Östensen, J.O., Höglund, E.: Lubricating grease replenishment in an elastohydrodynamic point contact. J. Tribol. 115, 501 (1993).  https://doi.org/10.1115/1.2921666 CrossRefGoogle Scholar
  21. 21.
    De Laurentis, N., Kadiric, A., Lugt, P., Cann, P.: The influence of bearing grease composition on friction in rolling/sliding concentrated contacts. Tribol. Int. 94, 624–632 (2016).  https://doi.org/10.1016/j.triboint.2015.10.012 CrossRefGoogle Scholar
  22. 22.
    Cen, H., Lugt, P.M., Morales-Espejel, G.: On the film thickness of grease-lubricated contacts at low speeds. Tribol. Trans. 57, 668–678 (2014).  https://doi.org/10.1080/10402004.2014.897781 CrossRefGoogle Scholar
  23. 23.
    Cann, P.M.: Starved grease lubrication of rolling contacts. Tribol. Trans. 42, 867–873 (1999).  https://doi.org/10.1080/10402009908982294 CrossRefGoogle Scholar
  24. 24.
    Vengudusamy, B., Enekes, C., Spallek, R.: On the film forming and friction behaviour of greases in rolling/sliding contacts. Tribol. Int. 129, 323–337 (2019).  https://doi.org/10.1016/j.triboint.2018.08.026 CrossRefGoogle Scholar
  25. 25.
    Cousseau, T.: Film thickness and friction in grease lubricated contacts: application to rolling bearing torque loss (2013)Google Scholar
  26. 26.
    Cousseau, T., Graça, B., Campos, A., Seabra, J.: Friction and wear in thrust ball bearings lubricated with biodegradable greases. Proc. Inst. Mech. Eng. Part J 225, 627–639 (2011).  https://doi.org/10.1177/1350650110397261 CrossRefGoogle Scholar
  27. 27.
    Cousseau, T., Björling, M., Graça, B., Campos, A., Seabra, J., Larsson, R.: Film thickness in a ball-on-disc contact lubricated with greases, bleed oils and base oils. Tribol. Int. 53, 53–60 (2012).  https://doi.org/10.1016/j.triboint.2012.04.018 CrossRefGoogle Scholar
  28. 28.
    Baker, A.E.: Grease bleeding: a factor in ball bearing performance. NLGI Spokesm. 22, 271–279 (1958)Google Scholar
  29. 29.
    Cann, P.M.E.: Thin-film grease lubrication. Proc. Inst. Mech. Eng. Part J 213, 405–416 (1999).  https://doi.org/10.1243/1350650991542776 CrossRefGoogle Scholar
  30. 30.
    Mérieux, J.-S., Hurley, S., Lubrecht, A.A., Cann, P.M.: Shear-degradation of grease and base oil availability in starved EHL lubrication. Tribol Ser 38, 581–588 (2000)CrossRefGoogle Scholar
  31. 31.
    Cann, P.M.E., Damiens, B., Lubrecht, A.A.: The transition between fully flooded and starved regimes in EHL. Tribol. Int. 37, 859–864 (2004).  https://doi.org/10.1016/j.triboint.2004.05.005 CrossRefGoogle Scholar
  32. 32.
    Gonçalves, D., Campos, A., Seabra, J.: An experimental study on starved grease lubricated contacts. Lubricants 6, 82 (2018).  https://doi.org/10.3390/lubricants6030082 CrossRefGoogle Scholar
  33. 33.
    Huang, L., Guo, D., Wen, S.: Starvation and reflow of point contact lubricated with greases of different chemical formulation. Tribol. Lett. 55, 483–492 (2014).  https://doi.org/10.1007/s11249-014-0376-2 CrossRefGoogle Scholar
  34. 34.
    Chiu, Y.P.: An analysis and prediction of lubricant film starvation in rolling contact systems. ASLE Trans. 17, 22–35 (1974).  https://doi.org/10.1080/05698197408981435 CrossRefGoogle Scholar
  35. 35.
    Chevalier, F., Lubrecht, A.A., Cann, P.M.E., Colin, F., Dalmaz, G.: Film thickness in starved EHL point contacts. J. Tribol. 120, 126 (1998).  https://doi.org/10.1115/1.2834175 CrossRefGoogle Scholar
  36. 36.
    Singh, J., Kumar, D., Tandon, N.: Rheological and film forming behavior of the developed nanocomposite greases under elastohydrodynamics lubrication regime. J. Tribol. 141, 021804 (2018).  https://doi.org/10.1115/1.4041304 CrossRefGoogle Scholar
  37. 37.
    Cousseau, T., Graça, B., Campos, A., Seabra, J.: Friction torque in grease lubricated thrust ball bearings. Tribol. Int. 44, 523–531 (2011).  https://doi.org/10.1016/j.triboint.2010.06.013 CrossRefGoogle Scholar
  38. 38.
    Cousseau, T., Graça, B.M., Campos, A.V., Seabra, J.H.O.: Influence of grease rheology on thrust ball bearings friction torque. Tribol. Int. 46, 106–113 (2012).  https://doi.org/10.1016/j.triboint.2011.06.010 CrossRefGoogle Scholar
  39. 39.
    Vengudusamy, B., Kuhn, M., Rankl, M., Spallek, R.: Film forming behavior of greases under starved and fully flooded EHL conditions. Tribol. Trans. 59, 62–71 (2016).  https://doi.org/10.1080/10402004.2015.1071450 CrossRefGoogle Scholar
  40. 40.
    Kanazawa, Y., Sayles, R.S., Kadiric, A.: Film formation and friction in grease lubricated rolling-sliding non-conformal contacts. Tribol. Int. 109, 505–518 (2017).  https://doi.org/10.1016/j.triboint.2017.01.026 CrossRefGoogle Scholar
  41. 41.
    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part IV—starvation results. J. Lubr. Technol. 99, 15 (1977).  https://doi.org/10.1115/1.3452973 CrossRefGoogle Scholar
  42. 42.
    Gonçalves, D., Vieira, A., Carneiro, A., Campos, A., Seabra, J.: Film thickness and friction relationship in grease lubricated rough contacts. Lubricants 5, 34 (2017).  https://doi.org/10.3390/lubricants5030034 CrossRefGoogle Scholar
  43. 43.
    Fiedler, M., Kuhn, E., Franco, J.M., Litters, T.: Tribological properties of greases based on biogenic base oils and traditional thickeners in sapphire-steel contact. Tribol. Lett. 44, 293–304 (2011).  https://doi.org/10.1007/s11249-011-9848-9 CrossRefGoogle Scholar
  44. 44.
    Guegan, J., Kadiric, A., Gabelli, A., Spikes, H.: The relationship between friction and film thickness in EHD point contacts in the presence of longitudinal roughness. Tribol. Lett. 64, 33 (2016).  https://doi.org/10.1007/s11249-016-0768-6 CrossRefGoogle Scholar
  45. 45.
    Gonçalves, D., Graça, B., Campos, A.V., Seabra, J., Leckner, J., Westbroek, R.: On the film thickness behaviour of polymer greases at low and high speeds. Tribol. Int. 90, 435–444 (2015).  https://doi.org/10.1016/j.triboint.2015.05.007 CrossRefGoogle Scholar
  46. 46.
    Gallego, R., Cidade, T., Sánchez, R., Valencia, C., Franco, J.M.: Tribological behaviour of novel chemically modified biopolymer-thickened lubricating greases investigated in a steel–steel rotating ball-on-three plates tribology cell. Tribol. Int. 94, 652–660 (2016).  https://doi.org/10.1016/j.triboint.2015.10.028 CrossRefGoogle Scholar
  47. 47.
    Sakai, K., Tokumo, Y., Ayame, Y., Shitara, Y., Tanaka, H., Sugimura, J.: Effect of formulation of Li greases on their flow and ball bearing torque. Tribol. Online. 11, 168–173 (2016).  https://doi.org/10.2474/trol.11.168 CrossRefGoogle Scholar
  48. 48.
    Heyer, P., Läuger, J., Co, A., Leal, G.L., Colby, R.H., Giacomin, A.J.: A flexible platform for tribological measurements on a rheometer. In: AIP Conference Proceedings, pp. 1168–1170. AIP (2008)Google Scholar
  49. 49.
    Delgado, M.A., Franco, J.M., Kuhn, E.: Effect of rheological behaviour of lithium greases on the friction process. Ind. Lubr. Tribol. 60, 37–45 (2008).  https://doi.org/10.1108/00368790810839927 CrossRefGoogle Scholar
  50. 50.
    Bair, S., Winer, W.O.: A rheological model for elastohydrodynamic contacts based on primary laboratory data. J. Lubr. Technol. 101, 258 (1979).  https://doi.org/10.1115/1.3453342 CrossRefGoogle Scholar
  51. 51.
    Höglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232, 176–184 (1999).  https://doi.org/10.1016/S0043-1648(99)00143-X CrossRefGoogle Scholar
  52. 52.
    Zhang, Y., Wen, S.: An analysis of elastohydrodynamic lubrication with limiting shear stress: part I—theory and solutions. Tribol. Trans. 45, 135–144 (2002).  https://doi.org/10.1080/10402000208982532 CrossRefGoogle Scholar
  53. 53.
    Zhang, Y.: EHL inlet zone analysis with the contact-lubricant interfacial limiting shear stress. Ind. Lubr. Tribol. 58, 202–209 (2006).  https://doi.org/10.1108/00368790610670791 CrossRefGoogle Scholar
  54. 54.
    Martinie, L., Vergne, P.: Lubrication at extreme conditions: a discussion about the limiting shear stress concept. Tribol. Lett. 63, 21 (2016).  https://doi.org/10.1007/s11249-016-0709-4 CrossRefGoogle Scholar
  55. 55.
    Habchi, W., Bair, S., Vergne, P.: On friction regimes in quantitative elastohydrodynamics. Tribol. Int. 58, 107–117 (2013).  https://doi.org/10.1016/j.triboint.2012.10.005 CrossRefGoogle Scholar
  56. 56.
    Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. A 356, 215–236 (1977).  https://doi.org/10.1098/rspa.1977.0129 CrossRefGoogle Scholar
  57. 57.
    Jacod, B., Venner, C.H., Lugt, P.M.: Extension of the friction mastercurve to limiting shear stress models. J. Tribol. 125, 739 (2003).  https://doi.org/10.1115/1.1572513 CrossRefGoogle Scholar
  58. 58.
    Gecim, B., Winer, W.O.: Lubricant limiting shear stress effect on EHD film thickness. J. Lubr. Technol. 102, 213 (1980).  https://doi.org/10.1115/1.3251474 CrossRefGoogle Scholar
  59. 59.
    Salimon, J., Mohd Noor, D.A., Nazrizawati, A.T., Mohd Firdaus, M.Y., Noraishah, A.: Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malays 39, 761–764 (2010)Google Scholar
  60. 60.
    Syahir, A.Z., Zulkifli, N.W.M., Masjuki, H.H., Kalam, M.A., Alabdulkarem, A., Gulzar, M., Khuong, L.S., Harith, M.H.: A review on bio-based lubricants and their applications. J. Clean. Prod. 168, 997–1016 (2017).  https://doi.org/10.1016/j.jclepro.2017.09.106 CrossRefGoogle Scholar
  61. 61.
    Cheng, H.S.: A refined solution to the thermal-elastohydrodynamic lubrication of rolling and sliding cylinders. ASLE Trans. 8, 397–410 (1965).  https://doi.org/10.1080/05698196508972110 CrossRefGoogle Scholar
  62. 62.
    Cheng, H.S.: Calculation of elastohydrodynamic film thickness in high speed rolling and sliding contacts. Mechanical Technology, Inc., Technical Report, MTI-67TR24 (1967)Google Scholar
  63. 63.
    Gupta, P.K., Cheng, H.S., Zhu, D., Forster, N.H., Schrand, J.B.: Viscoelastic effects in MIL-L-7808-type lubricant. Part I: analytical formulation. Tribol. Trans. 35, 269–274 (1992).  https://doi.org/10.1080/10402009208982117 CrossRefGoogle Scholar
  64. 64.
    Keller, W.D.: Morphology of clay minerals in the Smectite-to-Illite conversion series by scanning electron microscopy. Clays Clay Miner. 34, 187–197 (1986).  https://doi.org/10.1346/CCMN.1986.0340209 CrossRefGoogle Scholar
  65. 65.
    Grenard, V., Divoux, T., Taberlet, N., Manneville, S.: Timescales in creep and yielding of attractive gels. Soft Matter 10, 1555 (2014).  https://doi.org/10.1039/c3sm52548a CrossRefGoogle Scholar
  66. 66.
    Aoki, Y., Hatano, A., Watanabe, H.: Rheology of carbon black suspensions. I. Three types of viscoelastic behavior. Rheol. Acta. 42, 209–216 (2003).  https://doi.org/10.1007/s00397-002-0278-3 CrossRefGoogle Scholar
  67. 67.
    Ovarlez, G., Tocquer, L., Bertrand, F., Coussot, P.: Rheopexy and tunable yield stress of carbon black suspensions. Soft Matter 9, 5540 (2013).  https://doi.org/10.1039/c3sm27650c CrossRefGoogle Scholar
  68. 68.
    Ruzicka, B., Zaccarelli, E.: A fresh look at the Laponite phase diagram. Soft Matter 7, 1268 (2011).  https://doi.org/10.1039/c0sm00590h CrossRefGoogle Scholar
  69. 69.
    Shahin, A., Joshi, Y.M.: Physicochemical effects in aging aqueous laponite suspensions. Langmuir 28, 15674–15686 (2012).  https://doi.org/10.1021/la302544y CrossRefGoogle Scholar
  70. 70.
    Shalkevich, A., Stradner, A., Bhat, S.K., Muller, F., Schurtenberger, P.: Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions. Langmuir 23, 3570–3580 (2007).  https://doi.org/10.1021/la062996i CrossRefGoogle Scholar
  71. 71.
    Treece, M.A., Oberhauser, J.P.: Ubiquity of soft glassy dynamics in polypropylene–clay nanocomposites. Polymer 48, 1083–1095 (2007).  https://doi.org/10.1016/j.polymer.2006.12.029 CrossRefGoogle Scholar
  72. 72.
    Solomon, M.J., Almusallam, A.S., Seefeldt, K.F., Somwangthanaroj, A., Varadan, P.: Rheology of polypropylene/clay hybrid materials. Macromolecules 34, 1864–1872 (2001).  https://doi.org/10.1021/ma001122e CrossRefGoogle Scholar
  73. 73.
    Treece, M.A., Oberhauser, J.P.: Soft glassy dynamics in polypropylene–clay nanocomposites. Macromolecules 40, 571–582 (2007).  https://doi.org/10.1021/ma0612374 CrossRefGoogle Scholar
  74. 74.
    Gibaud, T., Perge, C., Lindström, S.B., Taberlet, N., Manneville, S.: Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress. Soft Matter 12, 1701–1712 (2016).  https://doi.org/10.1039/C5SM02587G CrossRefGoogle Scholar
  75. 75.
    Koumakis, N., Petekidis, G.: Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7, 2456–2470 (2011).  https://doi.org/10.1039/c0sm00957a CrossRefGoogle Scholar
  76. 76.
    Pham, K.N., Petekidis, G., Vlassopoulos, D., Egelhaaf, S.U., Poon, W.C.K., Pusey, P.N.: Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J. Rheol. 52, 649–676 (2008).  https://doi.org/10.1122/1.2838255 CrossRefGoogle Scholar
  77. 77.
    Delgado, M.A., Valencia, C., Sánchez, M.C., Franco, J.M., Gallegos, C.: Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases. Ind. Eng. Chem. Res. 45, 1902–1910 (2006).  https://doi.org/10.1021/ie050826f CrossRefGoogle Scholar
  78. 78.
    Martín-Alfonso, J.E., Valencia, C., Sánchez, M.C., Franco, J.M.: Evaluation of thermal and rheological properties of lubricating greases modified with recycled LDPE. Tribol. Trans. 55, 518–528 (2012).  https://doi.org/10.1080/10402004.2012.676162 CrossRefGoogle Scholar
  79. 79.
    Delgado, M.A., Valencia, C., Sánchez, M.C., Franco, J.M., Gallegos, C.: Thermorheological behaviour of a lithium lubricating grease. Tribol. Lett. 23, 47–54 (2006).  https://doi.org/10.1007/s11249-006-9109-5 CrossRefGoogle Scholar
  80. 80.
    Møller, P.C.F., Rodts, S., Michels, M.A.J., Bonn, D.: Shear banding and yield stress in soft glassy materials. Phys. Rev. E 77, 041507 (2008).  https://doi.org/10.1103/PhysRevE.77.041507 CrossRefGoogle Scholar
  81. 81.
    Divoux, T., Fardin, M.A., Manneville, S., Lerouge, S.: Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48, 81–103 (2016).  https://doi.org/10.1146/annurev-fluid-122414-034416 CrossRefGoogle Scholar
  82. 82.
    Britton, M.M., Callaghan, P.T.: Nuclear magnetic resonance visualization of anomalous flow in cone-and-plate rheometry. J. Rheol. 41, 1365–1386 (1997).  https://doi.org/10.1122/1.550846 CrossRefGoogle Scholar
  83. 83.
    Martín-Alfonso, J.E., Valencia, C., Sánchez, M.C., Franco, J.M., Gallegos, C.: The effect of recycled polymer addition on the thermorheological behavior of modified lubricating greases. Polym. Eng. Sci. 53, 818–826 (2013).  https://doi.org/10.1002/pen.23327 CrossRefGoogle Scholar
  84. 84.
    Tallian, T.E.: On competing failure modes in rolling contact. ASLE Trans. 10, 418–439 (1967).  https://doi.org/10.1080/05698196708972201 CrossRefGoogle Scholar
  85. 85.
    Palacios, J.M.: Elastohydrodynamic films in mixed lubrication: an experimental investigation. Wear 89, 303–312 (1983).  https://doi.org/10.1016/0043-1648(83)90151-5 CrossRefGoogle Scholar
  86. 86.
    Echávarri Otero, J., Lafont Morgado, P., ChacónTanarro, E., de la Guerra Ochoa, E., DíazLantada, A., Munoz-Guijosa, J.M., MuñozSanz, J.L.: Analytical model for predicting the friction coefficient in point contacts with thermal elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. Part J 225, 181–191 (2011).  https://doi.org/10.1177/1350650111398848 CrossRefGoogle Scholar
  87. 87.
    De Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20, 273–286 (2005).  https://doi.org/10.1007/s11249-005-9067-3 CrossRefGoogle Scholar
  88. 88.
    Paouris, L., Rahmani, R., Theodossiades, S., Rahnejat, H., Hunt, G., Barton, W.: An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation. Tribol. Lett. 64, 10 (2016).  https://doi.org/10.1007/s11249-016-0740-5 CrossRefGoogle Scholar
  89. 89.
    Awasthi, V., Joshi, Y.M.: Effect of temperature on aging and time-temperature superposition in nonergodic laponite suspensions. Soft Matter 5, 4991–4996 (2009).  https://doi.org/10.1039/b915105b CrossRefGoogle Scholar
  90. 90.
    Shaukat, A., Sharma, A., Joshi, Y.M.: Time–aging time–stress superposition in soft glass under tensile deformation field. Rheol. Acta 49, 1093–1101 (2010).  https://doi.org/10.1007/s00397-010-0469-2 CrossRefGoogle Scholar
  91. 91.
    Song, Y., Zheng, Q., Cao, Q.: On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. J. Rheol. 53, 1379–1388 (2009).  https://doi.org/10.1122/1.3216923 CrossRefGoogle Scholar
  92. 92.
    Wyss, H.M., Miyazaki, K., Mattsson, J., Hu, Z., Reichman, D.R., Weitz, D.A.: Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials. Phys. Rev. Lett. 98, 238303 (2007).  https://doi.org/10.1103/PhysRevLett.98.238303 CrossRefGoogle Scholar
  93. 93.
    Park, H.E., Dealy, J., Münstedt, H.: Influence of long-chain branching on time-pressure and time-temperature shift factors for polystyrene and polyethylene. Rheol. Acta 46, 153–159 (2006).  https://doi.org/10.1007/s00397-006-0116-0 CrossRefGoogle Scholar
  94. 94.
    Coussot, P.: Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Phys. Rev. Lett. 74, 3971–3974 (1995).  https://doi.org/10.1103/PhysRevLett.74.3971 CrossRefGoogle Scholar
  95. 95.
    Kavehpour, H.P., McKinley, G.H.: Tribo-rheometry: from gap-dependent rheology to tribology. Tribol. Lett. 17, 327–335 (2004).  https://doi.org/10.1023/B:TRIL.0000032471.06795.ea CrossRefGoogle Scholar
  96. 96.
    Quek, M.C., Chin, N.L., Yusof, Y.A.: Modelling of rheological behaviour of soursop juice concentrates using shear rate–temperature–concentration superposition. J. Food Eng. 118, 380–386 (2013).  https://doi.org/10.1016/j.jfoodeng.2013.04.025 CrossRefGoogle Scholar
  97. 97.
    Da Silva, M.V., Delgado, J.M.P.Q., Gonçalves, M.P.: Impact of MG 2 + and Tara gum concentrations on flow and textural properties of WPI solutions and cold-set gels. Int. J. Food Prop. 13, 972–982 (2010).  https://doi.org/10.1080/10942910902927128 CrossRefGoogle Scholar
  98. 98.
    Johnston, W.G.: A method to calculate the pressure-viscosity coefficient from bulk properties of lubricants. ASLE Trans. 24, 232–238 (1981).  https://doi.org/10.1080/05698198108983016 CrossRefGoogle Scholar
  99. 99.
    Wright, W.A.: Prediction of bulk moduli and pressure-volume-temperature data for petroleum oils. ASLE Trans. 10, 349–356 (1967).  https://doi.org/10.1080/05698196708972193 CrossRefGoogle Scholar
  100. 100.
    Biresaw, G., Bantchev, G.B.: Pressure viscosity coefficient of vegetable oils. Tribol. Lett. 49, 501–512 (2013).  https://doi.org/10.1007/s11249-012-0091-9 CrossRefGoogle Scholar
  101. 101.
    Esteban, B., Riba, J.-R., Baquero, G., Rius, A., Puig, R.: Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 42, 164–171 (2012).  https://doi.org/10.1016/j.biombioe.2012.03.007 CrossRefGoogle Scholar
  102. 102.
    Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., Krisnangkura, K.: Estimation of density of biodiesel. Energy Fuels 28, 4633–4641 (2014).  https://doi.org/10.1021/ef501031z CrossRefGoogle Scholar
  103. 103.
    Lord, J., Larsson, R.: Effects of slide-roll ratio and lubricant properties on elastohydrodynamic lubrication film thickness and traction. Proc. Inst. Mech. Eng. Part J 215, 301–308 (2001).  https://doi.org/10.1243/1350650011543556 CrossRefGoogle Scholar
  104. 104.
    Williamson, B.P., Kendall, D.L.R., Cann, P.M.: The influence of grease composition on film thickness in EHD contacts. NLGI Spokesm. 57, 13–18 (1993)Google Scholar
  105. 105.
    Cann, P.M.: Starvation and reflow in a grease-lubricated elastohydrodynamic contact. Tribol. Trans. 39, 698–704 (1996).  https://doi.org/10.1080/10402009608983585 CrossRefGoogle Scholar
  106. 106.
    Thorp, J.M.: Four-ball assessment of deep drawing oils. Wear 33, 93–108 (1975).  https://doi.org/10.1016/0043-1648(75)90227-6 CrossRefGoogle Scholar
  107. 107.
    Brown, E.D.: Friction and wear testing with the modern four-ball apparatus. Wear 17, 381–388 (1971).  https://doi.org/10.1016/0043-1648(71)90044-5 CrossRefGoogle Scholar
  108. 108.
    I-Ming, F.: A new approach in interpreting the four-ball wear results. Wear 5, 275–288 (1962).  https://doi.org/10.1016/0043-1648(62)90130-8 CrossRefGoogle Scholar
  109. 109.
    Kuo, W.-F., Chiou, Y.-C., Lee, R.-T.: A study on lubrication mechanism and wear scar in sliding circular contacts. Wear 201, 217–226 (1996).  https://doi.org/10.1016/S0043-1648(96)07247-X CrossRefGoogle Scholar
  110. 110.
    Wikström, V., Höglund, E.: Starting and steady-state friction torque of grease-lubricated rolling element bearings at low temperatures—part II: correlation with less-complex test methods. Tribol. Trans. 39, 684–690 (1996).  https://doi.org/10.1080/10402009608983583 CrossRefGoogle Scholar
  111. 111.
    Cousseau, T., Graça, B.M., Campos, A.V., Seabra, J.H.O.: Influence of grease formulation on thrust bearings power loss. Proc. Inst. Mech. Eng. Part J 224, 935–946 (2010).  https://doi.org/10.1243/13506501jet724 CrossRefGoogle Scholar
  112. 112.
    Bair, S.: High pressure rheology for quantitative elastohydrodynamics. Tribol. Interface Eng. Ser. 54, 260 (2007)Google Scholar
  113. 113.
    Cann, P.M.: Grease lubrication of rolling element bearings—role of the grease thickener. Lubr. Sci. 19, 183–196 (2007).  https://doi.org/10.1002/ls.39 CrossRefGoogle Scholar
  114. 114.
    Scarlett, N.A.: Paper 21: use of grease in rolling bearings. Proc. Inst. Mech. Eng. Conf. 182, 585–624 (1967).  https://doi.org/10.1243/PIME_CONF_1967_182_045_02 CrossRefGoogle Scholar
  115. 115.
    Couronne, I., Blettner, G., Vergne, P.: Rheological behavior of greases: part I—effects of composition and structure. Tribol. Trans. 43, 619–626 (2000).  https://doi.org/10.1080/10402000008982386 CrossRefGoogle Scholar
  116. 116.
    Mu’azu, D., Bukhari, A., Munef, K.: Effect of montmorillonite content in natural Saudi Arabian clay on its adsorptive performance for single aqueous uptake of Cu(II) and Ni(II). J. King Saud Univ. Sci. (2018).  https://doi.org/10.1016/j.jksus.2018.06.003 CrossRefGoogle Scholar
  117. 117.
    Wang, M.-J., Gray, C.A., Reznek, S.A., Mahmud, K., Kutsovsky, Y.: Carbon black. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Birla Institute of Technology and Science, PilaniZuarinagarIndia

Personalised recommendations