Tribology Letters

, 67:104 | Cite as

The Role of Grease Composition and Rheology in Elastohydrodynamic Lubrication

  • Mohd. Mubashshir
  • Asima ShaukatEmail author
Original Paper


Grease lubrication is inherently complicated due to its non-Newtonian flow dynamics. The flow behavior of grease is difficult to determine under tribological shear rates as these shear rates are often extremely high, and therefore, are not accessible on a regular rheometer. In this work, we demonstrate the use of shear rate-concentration superposition method to extrapolate the data measured with a rheometer to tribologically relevant shear rates. This method is similar to the other superposition methods routinely employed by rheologists for predicting flow behavior beyond the measurement range of rheometer. In this method, a data master curve, which extends over a broad range of shear rates, is constructed by superposing individual flow curves for greases with different thickener concentrations. The master curve is utilized to determine infinite shear viscosity of grease which is then used for the film thickness estimation. Furthermore, the grease samples are tribologically tested using a four-ball tester to identify the individual and interactive roles of the thickener type, concentration and base oil in lubrication behavior. A change in thickener concentration or type influences frictional torque and wear scar size through modification in infinite shear viscosity and structural stability of grease. The SEM images show deposition of thickener particles on the contact surface, which also apparently affect friction and wear during the test. The lubrication performance is strongly influenced by base oil, which points towards the importance of its role in dictating flow resistance and film-forming behavior of grease inside elastohydrodynamic contact.


Grease lubrication Elastohydrodynamic film thickness Rheology Wear Friction 



This work is supported by Early Career Research Award (ECR/2016/000228), Science and Engineering Research Board, Department of Science and Technology, Government of India; INSPIRE Faculty award (DST/INSPIRE/04/2014/001055), Department of Science and Technology, Government of India; and Additional Competitive Grant (GOA/ACG/2014-15/Aug/03), BITS Pilani, K. K. Birla Goa campus, India.

Compliance with Ethical Standards

Conflicts of interest

The authors declare that they have no conflicts of interest.


  1. 1.
    Delgado, M.A., Sánchez, M.C., Valencia, C., Franco, J.M., Gallegos, C.: Relationship among microstructure, rheology and processing of a lithium lubricating grease. Chem. Eng. Res. Des. 83, 1085–1092 (2005). CrossRefGoogle Scholar
  2. 2.
    Roman, C., Valencia, C., Franco, J.M.: AFM and SEM assessment of lubricating grease microstructures: influence of sample preparation protocol, frictional working conditions and composition. Tribol. Lett. 63, 20 (2016). CrossRefGoogle Scholar
  3. 3.
    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. J. Lubr. Technol. 99, 264 (1977). CrossRefGoogle Scholar
  4. 4.
    Kauzlarich, J.J., Greenwood, J.A.: Elastohydrodynamic lubrication with Herschel–Bulkley model greases. ASLE Trans. 15, 269–277 (1972). CrossRefGoogle Scholar
  5. 5.
    Jonkisz, W., Krzemiński-Freda, H.: Pressure distribution and shape of an elastohydro-dynamic grease film. Wear 55, 81–89 (1979). CrossRefGoogle Scholar
  6. 6.
    Cheng, J.: Elastohydrodynamic grease lubrication theory and numerical solution in line contacts. Tribol. Trans. 37, 711–718 (1994). CrossRefGoogle Scholar
  7. 7.
    Karthikeyan, B.K., Teodorescu, M., Rahnejat, H., Rothberg, S.J.: Thermoelastohydrodynamics of grease-lubricated concentrated point contacts. Proc. Inst. Mech. Eng. Part C 224, 683–695 (2010). CrossRefGoogle Scholar
  8. 8.
    Yoo, J.G., Kim, K.W.: Numerical analysis of grease thermal elastohydrodynamic lubrication problems using the Herschel–Bulkley model. Tribol. Int. 30, 401–408 (1997). CrossRefGoogle Scholar
  9. 9.
    Wada, S., Hayashi, H., Haga, K., Kawakami, Y., Okajima, M.: Elastohydrodynamic lubrication of a Bingham solid. Bull. JSME. 20, 110–115 (1977). CrossRefGoogle Scholar
  10. 10.
    Yang, Z., Qian, X.: A study of grease film thickness in elastorheodynamic rolling point contacts. ImechE Conf. Publ. 1, 97–104 (1987)Google Scholar
  11. 11.
    Palacios, J.M., Palacios, M.P.: Rheological properties of greases in EHD contacts. Tribol. Int. 17, 167–171 (1984). CrossRefGoogle Scholar
  12. 12.
    Dong, D., Qian, X.: A theory of elastohydrodynamic grease-lubricated line contact based on a refined rheological model. Tribol. Int. 21, 261–267 (1988). CrossRefGoogle Scholar
  13. 13.
    Kochi, T., Ichimura, R., Yoshihara, M., Dong, D., Kimura, Y.: Film thickness and traction in soft EHL with grease. J. Jpn. Soc. Tribol. 12, 171–176 (2017)Google Scholar
  14. 14.
    Bordenet, L., Dalmaz, G., Chaomleffel, J.-P., Vergne, F.: A study of grease film thicknesses in elastorheodynamic rolling point contacts. Lubr. Sci. 2, 273–284 (1990). CrossRefGoogle Scholar
  15. 15.
    Cyriac, F., Lugt, P.M., Bosman, R., Padberg, C.J., Venner, C.H.: Effect of thickener particle geometry and concentration on the grease EHL film thickness at medium speeds. Tribol. Lett. 61, 18 (2016). CrossRefGoogle Scholar
  16. 16.
    Cann, P.M., Williamson, B.P., Coy, R.C., Spikes, H.A.: The behaviour of greases in elastohydrodynamic contacts. J. Phys. D 25, A124–A132 (1992). CrossRefGoogle Scholar
  17. 17.
    Poon, S.Y.: An experimental study of grease in elastohydrodynamic lubrication. J. Lubr. Technol. 94, 27 (1972). CrossRefGoogle Scholar
  18. 18.
    Jonkisz, W., Krzeminski-Freda, H.: The properties of elastohydrodynamic grease films. Wear 77, 277–285 (1982). CrossRefGoogle Scholar
  19. 19.
    Kaneta, M., Ogata, T., Takubo, Y., Naka, M.: Effects of a thickener structure on grease elastohydrodynamic lubrication films. Proc. Inst. Mech. Eng. Part J 214, 327–336 (2000). CrossRefGoogle Scholar
  20. 20.
    Åström, H., Östensen, J.O., Höglund, E.: Lubricating grease replenishment in an elastohydrodynamic point contact. J. Tribol. 115, 501 (1993). CrossRefGoogle Scholar
  21. 21.
    De Laurentis, N., Kadiric, A., Lugt, P., Cann, P.: The influence of bearing grease composition on friction in rolling/sliding concentrated contacts. Tribol. Int. 94, 624–632 (2016). CrossRefGoogle Scholar
  22. 22.
    Cen, H., Lugt, P.M., Morales-Espejel, G.: On the film thickness of grease-lubricated contacts at low speeds. Tribol. Trans. 57, 668–678 (2014). CrossRefGoogle Scholar
  23. 23.
    Cann, P.M.: Starved grease lubrication of rolling contacts. Tribol. Trans. 42, 867–873 (1999). CrossRefGoogle Scholar
  24. 24.
    Vengudusamy, B., Enekes, C., Spallek, R.: On the film forming and friction behaviour of greases in rolling/sliding contacts. Tribol. Int. 129, 323–337 (2019). CrossRefGoogle Scholar
  25. 25.
    Cousseau, T.: Film thickness and friction in grease lubricated contacts: application to rolling bearing torque loss (2013)Google Scholar
  26. 26.
    Cousseau, T., Graça, B., Campos, A., Seabra, J.: Friction and wear in thrust ball bearings lubricated with biodegradable greases. Proc. Inst. Mech. Eng. Part J 225, 627–639 (2011). CrossRefGoogle Scholar
  27. 27.
    Cousseau, T., Björling, M., Graça, B., Campos, A., Seabra, J., Larsson, R.: Film thickness in a ball-on-disc contact lubricated with greases, bleed oils and base oils. Tribol. Int. 53, 53–60 (2012). CrossRefGoogle Scholar
  28. 28.
    Baker, A.E.: Grease bleeding: a factor in ball bearing performance. NLGI Spokesm. 22, 271–279 (1958)Google Scholar
  29. 29.
    Cann, P.M.E.: Thin-film grease lubrication. Proc. Inst. Mech. Eng. Part J 213, 405–416 (1999). CrossRefGoogle Scholar
  30. 30.
    Mérieux, J.-S., Hurley, S., Lubrecht, A.A., Cann, P.M.: Shear-degradation of grease and base oil availability in starved EHL lubrication. Tribol Ser 38, 581–588 (2000)CrossRefGoogle Scholar
  31. 31.
    Cann, P.M.E., Damiens, B., Lubrecht, A.A.: The transition between fully flooded and starved regimes in EHL. Tribol. Int. 37, 859–864 (2004). CrossRefGoogle Scholar
  32. 32.
    Gonçalves, D., Campos, A., Seabra, J.: An experimental study on starved grease lubricated contacts. Lubricants 6, 82 (2018). CrossRefGoogle Scholar
  33. 33.
    Huang, L., Guo, D., Wen, S.: Starvation and reflow of point contact lubricated with greases of different chemical formulation. Tribol. Lett. 55, 483–492 (2014). CrossRefGoogle Scholar
  34. 34.
    Chiu, Y.P.: An analysis and prediction of lubricant film starvation in rolling contact systems. ASLE Trans. 17, 22–35 (1974). CrossRefGoogle Scholar
  35. 35.
    Chevalier, F., Lubrecht, A.A., Cann, P.M.E., Colin, F., Dalmaz, G.: Film thickness in starved EHL point contacts. J. Tribol. 120, 126 (1998). CrossRefGoogle Scholar
  36. 36.
    Singh, J., Kumar, D., Tandon, N.: Rheological and film forming behavior of the developed nanocomposite greases under elastohydrodynamics lubrication regime. J. Tribol. 141, 021804 (2018). CrossRefGoogle Scholar
  37. 37.
    Cousseau, T., Graça, B., Campos, A., Seabra, J.: Friction torque in grease lubricated thrust ball bearings. Tribol. Int. 44, 523–531 (2011). CrossRefGoogle Scholar
  38. 38.
    Cousseau, T., Graça, B.M., Campos, A.V., Seabra, J.H.O.: Influence of grease rheology on thrust ball bearings friction torque. Tribol. Int. 46, 106–113 (2012). CrossRefGoogle Scholar
  39. 39.
    Vengudusamy, B., Kuhn, M., Rankl, M., Spallek, R.: Film forming behavior of greases under starved and fully flooded EHL conditions. Tribol. Trans. 59, 62–71 (2016). CrossRefGoogle Scholar
  40. 40.
    Kanazawa, Y., Sayles, R.S., Kadiric, A.: Film formation and friction in grease lubricated rolling-sliding non-conformal contacts. Tribol. Int. 109, 505–518 (2017). CrossRefGoogle Scholar
  41. 41.
    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part IV—starvation results. J. Lubr. Technol. 99, 15 (1977). CrossRefGoogle Scholar
  42. 42.
    Gonçalves, D., Vieira, A., Carneiro, A., Campos, A., Seabra, J.: Film thickness and friction relationship in grease lubricated rough contacts. Lubricants 5, 34 (2017). CrossRefGoogle Scholar
  43. 43.
    Fiedler, M., Kuhn, E., Franco, J.M., Litters, T.: Tribological properties of greases based on biogenic base oils and traditional thickeners in sapphire-steel contact. Tribol. Lett. 44, 293–304 (2011). CrossRefGoogle Scholar
  44. 44.
    Guegan, J., Kadiric, A., Gabelli, A., Spikes, H.: The relationship between friction and film thickness in EHD point contacts in the presence of longitudinal roughness. Tribol. Lett. 64, 33 (2016). CrossRefGoogle Scholar
  45. 45.
    Gonçalves, D., Graça, B., Campos, A.V., Seabra, J., Leckner, J., Westbroek, R.: On the film thickness behaviour of polymer greases at low and high speeds. Tribol. Int. 90, 435–444 (2015). CrossRefGoogle Scholar
  46. 46.
    Gallego, R., Cidade, T., Sánchez, R., Valencia, C., Franco, J.M.: Tribological behaviour of novel chemically modified biopolymer-thickened lubricating greases investigated in a steel–steel rotating ball-on-three plates tribology cell. Tribol. Int. 94, 652–660 (2016). CrossRefGoogle Scholar
  47. 47.
    Sakai, K., Tokumo, Y., Ayame, Y., Shitara, Y., Tanaka, H., Sugimura, J.: Effect of formulation of Li greases on their flow and ball bearing torque. Tribol. Online. 11, 168–173 (2016). CrossRefGoogle Scholar
  48. 48.
    Heyer, P., Läuger, J., Co, A., Leal, G.L., Colby, R.H., Giacomin, A.J.: A flexible platform for tribological measurements on a rheometer. In: AIP Conference Proceedings, pp. 1168–1170. AIP (2008)Google Scholar
  49. 49.
    Delgado, M.A., Franco, J.M., Kuhn, E.: Effect of rheological behaviour of lithium greases on the friction process. Ind. Lubr. Tribol. 60, 37–45 (2008). CrossRefGoogle Scholar
  50. 50.
    Bair, S., Winer, W.O.: A rheological model for elastohydrodynamic contacts based on primary laboratory data. J. Lubr. Technol. 101, 258 (1979). CrossRefGoogle Scholar
  51. 51.
    Höglund, E.: Influence of lubricant properties on elastohydrodynamic lubrication. Wear 232, 176–184 (1999). CrossRefGoogle Scholar
  52. 52.
    Zhang, Y., Wen, S.: An analysis of elastohydrodynamic lubrication with limiting shear stress: part I—theory and solutions. Tribol. Trans. 45, 135–144 (2002). CrossRefGoogle Scholar
  53. 53.
    Zhang, Y.: EHL inlet zone analysis with the contact-lubricant interfacial limiting shear stress. Ind. Lubr. Tribol. 58, 202–209 (2006). CrossRefGoogle Scholar
  54. 54.
    Martinie, L., Vergne, P.: Lubrication at extreme conditions: a discussion about the limiting shear stress concept. Tribol. Lett. 63, 21 (2016). CrossRefGoogle Scholar
  55. 55.
    Habchi, W., Bair, S., Vergne, P.: On friction regimes in quantitative elastohydrodynamics. Tribol. Int. 58, 107–117 (2013). CrossRefGoogle Scholar
  56. 56.
    Johnson, K.L., Tevaarwerk, J.L.: Shear behaviour of elastohydrodynamic oil films. Proc. R. Soc. A 356, 215–236 (1977). CrossRefGoogle Scholar
  57. 57.
    Jacod, B., Venner, C.H., Lugt, P.M.: Extension of the friction mastercurve to limiting shear stress models. J. Tribol. 125, 739 (2003). CrossRefGoogle Scholar
  58. 58.
    Gecim, B., Winer, W.O.: Lubricant limiting shear stress effect on EHD film thickness. J. Lubr. Technol. 102, 213 (1980). CrossRefGoogle Scholar
  59. 59.
    Salimon, J., Mohd Noor, D.A., Nazrizawati, A.T., Mohd Firdaus, M.Y., Noraishah, A.: Fatty acid composition and physicochemical properties of Malaysian castor bean Ricinus communis L. seed oil. Sains Malays 39, 761–764 (2010)Google Scholar
  60. 60.
    Syahir, A.Z., Zulkifli, N.W.M., Masjuki, H.H., Kalam, M.A., Alabdulkarem, A., Gulzar, M., Khuong, L.S., Harith, M.H.: A review on bio-based lubricants and their applications. J. Clean. Prod. 168, 997–1016 (2017). CrossRefGoogle Scholar
  61. 61.
    Cheng, H.S.: A refined solution to the thermal-elastohydrodynamic lubrication of rolling and sliding cylinders. ASLE Trans. 8, 397–410 (1965). CrossRefGoogle Scholar
  62. 62.
    Cheng, H.S.: Calculation of elastohydrodynamic film thickness in high speed rolling and sliding contacts. Mechanical Technology, Inc., Technical Report, MTI-67TR24 (1967)Google Scholar
  63. 63.
    Gupta, P.K., Cheng, H.S., Zhu, D., Forster, N.H., Schrand, J.B.: Viscoelastic effects in MIL-L-7808-type lubricant. Part I: analytical formulation. Tribol. Trans. 35, 269–274 (1992). CrossRefGoogle Scholar
  64. 64.
    Keller, W.D.: Morphology of clay minerals in the Smectite-to-Illite conversion series by scanning electron microscopy. Clays Clay Miner. 34, 187–197 (1986). CrossRefGoogle Scholar
  65. 65.
    Grenard, V., Divoux, T., Taberlet, N., Manneville, S.: Timescales in creep and yielding of attractive gels. Soft Matter 10, 1555 (2014). CrossRefGoogle Scholar
  66. 66.
    Aoki, Y., Hatano, A., Watanabe, H.: Rheology of carbon black suspensions. I. Three types of viscoelastic behavior. Rheol. Acta. 42, 209–216 (2003). CrossRefGoogle Scholar
  67. 67.
    Ovarlez, G., Tocquer, L., Bertrand, F., Coussot, P.: Rheopexy and tunable yield stress of carbon black suspensions. Soft Matter 9, 5540 (2013). CrossRefGoogle Scholar
  68. 68.
    Ruzicka, B., Zaccarelli, E.: A fresh look at the Laponite phase diagram. Soft Matter 7, 1268 (2011). CrossRefGoogle Scholar
  69. 69.
    Shahin, A., Joshi, Y.M.: Physicochemical effects in aging aqueous laponite suspensions. Langmuir 28, 15674–15686 (2012). CrossRefGoogle Scholar
  70. 70.
    Shalkevich, A., Stradner, A., Bhat, S.K., Muller, F., Schurtenberger, P.: Cluster, glass, and gel formation and viscoelastic phase separation in aqueous clay suspensions. Langmuir 23, 3570–3580 (2007). CrossRefGoogle Scholar
  71. 71.
    Treece, M.A., Oberhauser, J.P.: Ubiquity of soft glassy dynamics in polypropylene–clay nanocomposites. Polymer 48, 1083–1095 (2007). CrossRefGoogle Scholar
  72. 72.
    Solomon, M.J., Almusallam, A.S., Seefeldt, K.F., Somwangthanaroj, A., Varadan, P.: Rheology of polypropylene/clay hybrid materials. Macromolecules 34, 1864–1872 (2001). CrossRefGoogle Scholar
  73. 73.
    Treece, M.A., Oberhauser, J.P.: Soft glassy dynamics in polypropylene–clay nanocomposites. Macromolecules 40, 571–582 (2007). CrossRefGoogle Scholar
  74. 74.
    Gibaud, T., Perge, C., Lindström, S.B., Taberlet, N., Manneville, S.: Multiple yielding processes in a colloidal gel under large amplitude oscillatory stress. Soft Matter 12, 1701–1712 (2016). CrossRefGoogle Scholar
  75. 75.
    Koumakis, N., Petekidis, G.: Two step yielding in attractive colloids: transition from gels to attractive glasses. Soft Matter 7, 2456–2470 (2011). CrossRefGoogle Scholar
  76. 76.
    Pham, K.N., Petekidis, G., Vlassopoulos, D., Egelhaaf, S.U., Poon, W.C.K., Pusey, P.N.: Yielding behavior of repulsion- and attraction-dominated colloidal glasses. J. Rheol. 52, 649–676 (2008). CrossRefGoogle Scholar
  77. 77.
    Delgado, M.A., Valencia, C., Sánchez, M.C., Franco, J.M., Gallegos, C.: Influence of soap concentration and oil viscosity on the rheology and microstructure of lubricating greases. Ind. Eng. Chem. Res. 45, 1902–1910 (2006). CrossRefGoogle Scholar
  78. 78.
    Martín-Alfonso, J.E., Valencia, C., Sánchez, M.C., Franco, J.M.: Evaluation of thermal and rheological properties of lubricating greases modified with recycled LDPE. Tribol. Trans. 55, 518–528 (2012). CrossRefGoogle Scholar
  79. 79.
    Delgado, M.A., Valencia, C., Sánchez, M.C., Franco, J.M., Gallegos, C.: Thermorheological behaviour of a lithium lubricating grease. Tribol. Lett. 23, 47–54 (2006). CrossRefGoogle Scholar
  80. 80.
    Møller, P.C.F., Rodts, S., Michels, M.A.J., Bonn, D.: Shear banding and yield stress in soft glassy materials. Phys. Rev. E 77, 041507 (2008). CrossRefGoogle Scholar
  81. 81.
    Divoux, T., Fardin, M.A., Manneville, S., Lerouge, S.: Shear banding of complex fluids. Annu. Rev. Fluid Mech. 48, 81–103 (2016). CrossRefGoogle Scholar
  82. 82.
    Britton, M.M., Callaghan, P.T.: Nuclear magnetic resonance visualization of anomalous flow in cone-and-plate rheometry. J. Rheol. 41, 1365–1386 (1997). CrossRefGoogle Scholar
  83. 83.
    Martín-Alfonso, J.E., Valencia, C., Sánchez, M.C., Franco, J.M., Gallegos, C.: The effect of recycled polymer addition on the thermorheological behavior of modified lubricating greases. Polym. Eng. Sci. 53, 818–826 (2013). CrossRefGoogle Scholar
  84. 84.
    Tallian, T.E.: On competing failure modes in rolling contact. ASLE Trans. 10, 418–439 (1967). CrossRefGoogle Scholar
  85. 85.
    Palacios, J.M.: Elastohydrodynamic films in mixed lubrication: an experimental investigation. Wear 89, 303–312 (1983). CrossRefGoogle Scholar
  86. 86.
    Echávarri Otero, J., Lafont Morgado, P., ChacónTanarro, E., de la Guerra Ochoa, E., DíazLantada, A., Munoz-Guijosa, J.M., MuñozSanz, J.L.: Analytical model for predicting the friction coefficient in point contacts with thermal elastohydrodynamic lubrication. Proc. Inst. Mech. Eng. Part J 225, 181–191 (2011). CrossRefGoogle Scholar
  87. 87.
    De Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20, 273–286 (2005). CrossRefGoogle Scholar
  88. 88.
    Paouris, L., Rahmani, R., Theodossiades, S., Rahnejat, H., Hunt, G., Barton, W.: An analytical approach for prediction of elastohydrodynamic friction with inlet shear heating and starvation. Tribol. Lett. 64, 10 (2016). CrossRefGoogle Scholar
  89. 89.
    Awasthi, V., Joshi, Y.M.: Effect of temperature on aging and time-temperature superposition in nonergodic laponite suspensions. Soft Matter 5, 4991–4996 (2009). CrossRefGoogle Scholar
  90. 90.
    Shaukat, A., Sharma, A., Joshi, Y.M.: Time–aging time–stress superposition in soft glass under tensile deformation field. Rheol. Acta 49, 1093–1101 (2010). CrossRefGoogle Scholar
  91. 91.
    Song, Y., Zheng, Q., Cao, Q.: On time-temperature-concentration superposition principle for dynamic rheology of carbon black filled polymers. J. Rheol. 53, 1379–1388 (2009). CrossRefGoogle Scholar
  92. 92.
    Wyss, H.M., Miyazaki, K., Mattsson, J., Hu, Z., Reichman, D.R., Weitz, D.A.: Strain-rate frequency superposition: a rheological probe of structural relaxation in soft materials. Phys. Rev. Lett. 98, 238303 (2007). CrossRefGoogle Scholar
  93. 93.
    Park, H.E., Dealy, J., Münstedt, H.: Influence of long-chain branching on time-pressure and time-temperature shift factors for polystyrene and polyethylene. Rheol. Acta 46, 153–159 (2006). CrossRefGoogle Scholar
  94. 94.
    Coussot, P.: Structural similarity and transition from Newtonian to non-Newtonian behavior for clay-water suspensions. Phys. Rev. Lett. 74, 3971–3974 (1995). CrossRefGoogle Scholar
  95. 95.
    Kavehpour, H.P., McKinley, G.H.: Tribo-rheometry: from gap-dependent rheology to tribology. Tribol. Lett. 17, 327–335 (2004). CrossRefGoogle Scholar
  96. 96.
    Quek, M.C., Chin, N.L., Yusof, Y.A.: Modelling of rheological behaviour of soursop juice concentrates using shear rate–temperature–concentration superposition. J. Food Eng. 118, 380–386 (2013). CrossRefGoogle Scholar
  97. 97.
    Da Silva, M.V., Delgado, J.M.P.Q., Gonçalves, M.P.: Impact of MG 2 + and Tara gum concentrations on flow and textural properties of WPI solutions and cold-set gels. Int. J. Food Prop. 13, 972–982 (2010). CrossRefGoogle Scholar
  98. 98.
    Johnston, W.G.: A method to calculate the pressure-viscosity coefficient from bulk properties of lubricants. ASLE Trans. 24, 232–238 (1981). CrossRefGoogle Scholar
  99. 99.
    Wright, W.A.: Prediction of bulk moduli and pressure-volume-temperature data for petroleum oils. ASLE Trans. 10, 349–356 (1967). CrossRefGoogle Scholar
  100. 100.
    Biresaw, G., Bantchev, G.B.: Pressure viscosity coefficient of vegetable oils. Tribol. Lett. 49, 501–512 (2013). CrossRefGoogle Scholar
  101. 101.
    Esteban, B., Riba, J.-R., Baquero, G., Rius, A., Puig, R.: Temperature dependence of density and viscosity of vegetable oils. Biomass Bioenergy 42, 164–171 (2012). CrossRefGoogle Scholar
  102. 102.
    Phankosol, S., Sudaprasert, K., Lilitchan, S., Aryusuk, K., Krisnangkura, K.: Estimation of density of biodiesel. Energy Fuels 28, 4633–4641 (2014). CrossRefGoogle Scholar
  103. 103.
    Lord, J., Larsson, R.: Effects of slide-roll ratio and lubricant properties on elastohydrodynamic lubrication film thickness and traction. Proc. Inst. Mech. Eng. Part J 215, 301–308 (2001). CrossRefGoogle Scholar
  104. 104.
    Williamson, B.P., Kendall, D.L.R., Cann, P.M.: The influence of grease composition on film thickness in EHD contacts. NLGI Spokesm. 57, 13–18 (1993)Google Scholar
  105. 105.
    Cann, P.M.: Starvation and reflow in a grease-lubricated elastohydrodynamic contact. Tribol. Trans. 39, 698–704 (1996). CrossRefGoogle Scholar
  106. 106.
    Thorp, J.M.: Four-ball assessment of deep drawing oils. Wear 33, 93–108 (1975). CrossRefGoogle Scholar
  107. 107.
    Brown, E.D.: Friction and wear testing with the modern four-ball apparatus. Wear 17, 381–388 (1971). CrossRefGoogle Scholar
  108. 108.
    I-Ming, F.: A new approach in interpreting the four-ball wear results. Wear 5, 275–288 (1962). CrossRefGoogle Scholar
  109. 109.
    Kuo, W.-F., Chiou, Y.-C., Lee, R.-T.: A study on lubrication mechanism and wear scar in sliding circular contacts. Wear 201, 217–226 (1996). CrossRefGoogle Scholar
  110. 110.
    Wikström, V., Höglund, E.: Starting and steady-state friction torque of grease-lubricated rolling element bearings at low temperatures—part II: correlation with less-complex test methods. Tribol. Trans. 39, 684–690 (1996). CrossRefGoogle Scholar
  111. 111.
    Cousseau, T., Graça, B.M., Campos, A.V., Seabra, J.H.O.: Influence of grease formulation on thrust bearings power loss. Proc. Inst. Mech. Eng. Part J 224, 935–946 (2010). CrossRefGoogle Scholar
  112. 112.
    Bair, S.: High pressure rheology for quantitative elastohydrodynamics. Tribol. Interface Eng. Ser. 54, 260 (2007)Google Scholar
  113. 113.
    Cann, P.M.: Grease lubrication of rolling element bearings—role of the grease thickener. Lubr. Sci. 19, 183–196 (2007). CrossRefGoogle Scholar
  114. 114.
    Scarlett, N.A.: Paper 21: use of grease in rolling bearings. Proc. Inst. Mech. Eng. Conf. 182, 585–624 (1967). CrossRefGoogle Scholar
  115. 115.
    Couronne, I., Blettner, G., Vergne, P.: Rheological behavior of greases: part I—effects of composition and structure. Tribol. Trans. 43, 619–626 (2000). CrossRefGoogle Scholar
  116. 116.
    Mu’azu, D., Bukhari, A., Munef, K.: Effect of montmorillonite content in natural Saudi Arabian clay on its adsorptive performance for single aqueous uptake of Cu(II) and Ni(II). J. King Saud Univ. Sci. (2018). CrossRefGoogle Scholar
  117. 117.
    Wang, M.-J., Gray, C.A., Reznek, S.A., Mahmud, K., Kutsovsky, Y.: Carbon black. Kirk-Othmer Encyclopedia of Chemical Technology. Wiley, New York (2003)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Birla Institute of Technology and Science, PilaniZuarinagarIndia

Personalised recommendations