Advertisement

Tribology Letters

, 67:58 | Cite as

Synthesis of a Multi-phenol Antioxidant and Its Compatibility with Alkyl Diphenylamine and ZDDP in Ester Oil

  • Yongliang Jin
  • Haitao Duan
  • Bingxue Cheng
  • Lei Wei
  • Jiesong Tu
  • Jianfang Liu
  • Jian LiEmail author
Original Paper
  • 30 Downloads

Abstract

In this study, a multi-phenol antioxidant 2,4,6-tris(3,5-di-tert-butyl-4-hydroxyphenylthio)-1,3,5-triazine (THA) was synthesized. The thermal stability of THA and its oxidation resistance in triisodecyl trimellitate (TDTM) ester oil were evaluated compared with several commercial phenol antioxidants. Further investigations on the oxidation resistance and tribological performance of THA with dinonyl diphenylamine (Am) and ZDDP composites were conducted to determine the additive compatibility in TDTM. The results indicate that the THA possesses higher thermal stability and more effectiveness of oxidation resistance than the commercial phenol antioxidants. The synergistic anti-oxidative effect is confirmed for the THA/Am mixtures in TDTM ester oil. However, the addition of THA alone or THA/Am mixtures shows no improvement for the tribological performance of TDTM. Excitingly, the THA/Am/ZDDP composite additives not only have the superior oxidation resistance, but exhibit the effective friction and wear reductions. It suggests the excellent compatibility of the synthesized THA antioxidant with Am and ZDDP additives in TDTM ester oil.

Keywords

Multi-phenol antioxidant Oxidation resistance Tribological performance Compatibility Ester oil 

Notes

Acknowledgements

We are grateful for the financial support from National Natural Science Foundation of China (No. 51575402).

Supplementary material

11249_2019_1167_MOESM1_ESM.docx (261 kb)
Supplementary material 1 (DOCX 261 kb)

References

  1. 1.
    Jin, Y., Duan, H., Wei, L., Chen, S., Qian, X., Jia, D., Li, J.: Online infrared spectra detection of lubricating oil during friction process at high temperature. Ind Lubr. Tribol. 70(7), 1294–1302 (2018)CrossRefGoogle Scholar
  2. 2.
    Pfaendtner, J.; Broadbelt, L. J. Mechanistic modeling of lubricant degradation. 2. The autoxidation of decane and octane. Industrial & Engineering Chemistry Research 2008, 47 (9), 2897-2904CrossRefGoogle Scholar
  3. 3.
    Chao, M., Li, W., Wang, X.: Influence of antioxidant on the thermal–oxidative degradation behavior and oxidation stability of synthetic ester. Thermochim. Acta 591, 16–21 (2014)CrossRefGoogle Scholar
  4. 4.
    Xia, L., Long, J., Zhao, Y., Wu, Z., Dai, Z., Wang, L.: Molecular dynamics simulation on the aggregation of lubricant oxidation products. Tribol. Lett. 66(3), 104 (2018)CrossRefGoogle Scholar
  5. 5.
    Qian, X., Xiang, Y., Shang, H., Cheng, B., Zhan, S., Li, J.: Thermal-oxidation mechanism of dioctyl adipate base oil. Friction 4(1), 29–38 (2016)CrossRefGoogle Scholar
  6. 6.
    Wu, N., Zong, Z.M., Fei, Y.W., Ma, J., Guo, F.: Thermal oxidation stability of poly-α-olefin lubricating oil. Asia-Pac. J. Chem. Eng. 12(5), 813–817 (2017)CrossRefGoogle Scholar
  7. 7.
    Siouris, S., Wilson, C.W.: Thermodynamic properties of pentaerythritol-based species involved in degradation of aviation gas turbine lubricants. Ind. Eng. Chem. Res. 49(23), 12294–12301 (2010)CrossRefGoogle Scholar
  8. 8.
    Wei, L., Duan, H., Chen, S., Jia, D., Qian, X., Cheng, B., Liu, J., Li, J.: A field test method to quantitatively determine oxidation stability of gasoline engine oil. Lubr. Sci. 30(2), 57–64 (2018)CrossRefGoogle Scholar
  9. 9.
    Adhvaryu, A., Sharma, B.K., Hwang, H.S., Erhan, S.Z., Perez, J.M.: Development of biobased synthetic fluids: application of molecular modeling to structure-physical property relationship. Ind. Eng. Chem. Res. 45(3), 928–933 (2006)CrossRefGoogle Scholar
  10. 10.
    Nagendramma, P., Kaul, S.: Development of ecofriendly/biodegradable lubricants: an overview. Renew. Sustain. Energy Rev. 16(1), 764–774 (2012)CrossRefGoogle Scholar
  11. 11.
    Yasa, S.R., Krishnasamy, S., Singh, R.K., Penumarthy, V.: Synthesis and characterization of iso-undecenoic and iso-undecanoic acids based polyol esters. Ind. Eng. Chem. Res. 56(26), 7423–7433 (2017)CrossRefGoogle Scholar
  12. 12.
    He, Y., Zolper, T.J., Liu, P., Zhao, Y., He, X., Shen, X., Sun, H., Duan, Q., Wang, Q.: Elastohydrodynamic lubrication properties and friction behaviors of several ester base stocks. Friction 3(3), 243–255 (2015)CrossRefGoogle Scholar
  13. 13.
    Singh, R.K., Kukrety, A., Sharma, O.P., Baranwal, S., Atray, N., Ray, S.S.: Study of a novel phenolic-ester as antioxidant additive in lube, biodiesel and blended diesel. J. Ind. Eng. Chem. 37, 27–31 (2016)CrossRefGoogle Scholar
  14. 14.
    Singh, A., Gandra, R.T., Schneider, E.W., Biswas, S.K.: Studies on the aging characteristics of base oil with amine based antioxidant in steel-on-steel lubricated sliding. J. Phys. Chem. C 117(4), 1735–1747 (2013)CrossRefGoogle Scholar
  15. 15.
    Singh, A., Gandra, R.T., Schneider, E.W., Biswas, S.K.: Lubricant degradation and related wear of a steel pin in lubricated sliding against a steel disc. ACS Appl. Mater. Interfaces 3(7), 2512–2521 (2011)CrossRefGoogle Scholar
  16. 16.
    Nagendramma, P.: Study of pentaerythritol tetraoleate ester as industrial gear oil. Lubr. Sci. 23(8), 355–362 (2011)CrossRefGoogle Scholar
  17. 17.
    da Silva, J.A.C., Habert, A.C., Freire, D.M.G.: A potential biodegradable lubricant from castor biodiesel esters. Lubr. Sci. 25(1), 53–61 (2013)CrossRefGoogle Scholar
  18. 18.
    Miao, C., Zhang, L., Zheng, K., Cui, Y., Zhang, S., Yu, L., Zhang, P.: Synthesis of ploy (p-methoxyphenol) and evaluation of its antioxidation behavior as an antioxidant in several ester oils. Tribol. Int. 88, 95–99 (2015)CrossRefGoogle Scholar
  19. 19.
    Miao, C., Yu, D., Huang, L., Zhang, S., Yu, L., Zhang, P.: Synthesis of 1, 3, 5-tris (phenylamino) benzene derivatives and experimental and theoretical investigations of their antioxidation mechanism. Ind. Eng. Chem. Res. 55(7), 1819–1826 (2016)CrossRefGoogle Scholar
  20. 20.
    Zhang, J., Spikes, H.: On the mechanism of ZDDP antiwear film formation. Tribol. Lett. 63(2), 24 (2016)CrossRefGoogle Scholar
  21. 21.
    Fan, K., Li, J., Ma, H., Wu, H., Ren, T., Kasrai, M., Bancroft, G.M.: Tribological characteristics of ashless dithiocarbamate derivatives and their combinations with ZDDP as additives in mineral oil. Tribol. Int. 41(12), 1226–1231 (2008)CrossRefGoogle Scholar
  22. 22.
    Parsaeian, P., Ghanbarzadeh, A., Van Eijk, M.C., Nedelcu, I., Neville, A., Morina, A.: A new insight into the interfacial mechanisms of the tribofilm formed by zinc dialkyl dithiophosphate. Appl. Surf. Sci. 403, 472–486 (2017)CrossRefGoogle Scholar
  23. 23.
    Barnes, A.M., Bartle, K.D.: Thibon VR (2001) A review of zinc dialkyldithiophosphates (ZDDPS): characterisation and role in the lubricating oil. Tribol. Int. 34(6), 389–395 (2001)CrossRefGoogle Scholar
  24. 24.
    Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)CrossRefGoogle Scholar
  25. 25.
    Wang, G., Xue, Y., An, L., Zheng, Y., Dou, Y., Zhang, L., Liu, Y.: Theoretical study on the structural and antioxidant properties of some recently synthesised 2,4,5-trimethoxy chalcones. Food Chem. 171, 89–97 (2015)CrossRefGoogle Scholar
  26. 26.
    Cao, H., Cheng, W.X., Li, C., Pan, X.L., Xie, X.G., Li, T.H.: DFT study on the antioxidant activity of rosmarinic acid. J. Mol. Struct. (Thoechem) 719(1–3), 177–183 (2005)CrossRefGoogle Scholar
  27. 27.
    Nenadis, N., Sigalas, M.P.: A DFT study on the radical scavenging potential of selected natural 3′, 4′-dihydroxy aurones. Food Res. Int. 44(1), 114–120 (2011)CrossRefGoogle Scholar
  28. 28.
    Xue, Y., Zhang, L., Li, Y., Yu, D., Zheng, Y., An, L., Gong, X., Liu, Y.: A DFT study on the structure and radical scavenging activity of newly synthesized hydroxychalcones. J. Phys. Org. Chem. 26(3), 240–248 (2013)CrossRefGoogle Scholar
  29. 29.
    Yokoyama, H.; Yamamoto, T.; Inoue, H. Method for producing 2,6-di-tert-butyl-4-mercaptophenol and 4,4′-isopropylidenedithiobis [2,6-di-tert-butylphenol]. U.S. Patent US 20080119672 A1, 2008Google Scholar
  30. 30.
    Tanaka, H., Tokumaru, Y., Fukui, K.I., Kuroboshi, M., Torii, S., Jutand, A., Amatore, C.: Chemo-and product-selective electrooxidation of 3-(arylthiomethyl)-Δ3-cephems. Synthesis 20, 3449–3459 (2009)CrossRefGoogle Scholar
  31. 31.
    Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)CrossRefGoogle Scholar
  32. 32.
    Rudnick, L.R.: Lubricant Additives: Chemistry and Applications. CRC Press, Boca Raton (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.State Key Laboratory of Special Surface Protection Materials and Application TechnologyWuhan Research Institute of Materials ProtectionWuhanChina
  2. 2.State Key Laboratory of TribologyTsinghua UniversityBeijingChina
  3. 3.College of Biological and Pharmaceutical EngineeringWuhan Polytechnic UniversityWuhanChina

Personalised recommendations