Tribology Letters

, 67:54 | Cite as

Adhesive Contact of Model Randomly Rough Rubber Surfaces

  • Vito Acito
  • Michele Ciavarella
  • Alexis M. Prevost
  • Antoine ChateauminoisEmail author
Original Paper


We study experimentally and theoretically the equilibrium adhesive contact between a smooth glass lens and a rough rubber surface textured with spherical microasperities with controlled height and spatial distributions. Measurements of the real contact area A versus load P are performed under compression by imaging the light transmitted at the microcontacts. A(P) is found to be non-linear and to strongly depend on the standard deviation of the asperity height distribution. Experimental results are discussed in the light of a discrete version of Fuller and Tabor’s (FT) original model (Proc R Soc A 345:327, 1975), which allows to take into account the elastic coupling arising from both microasperities interactions and curvature of the glass lens. Our experimental data on microcontact size distributions are well captured by our discrete extended model. We show that the elastic coupling arising from the lens curvature has a significant contribution to the A(P) relationship. Our discrete model also clearly shows that the adhesion-induced effect on A remains significant even for vanishingly small pull-off forces. Last, at the local asperity length scale, our measurements show that the pressure dependence of the microcontacts density can be simply described by the original FT model.


Adhesive contact Randomly rough surfaces Silicone rubber Fuller and Tabor theory JKR theory 



The authors wish to thank Guido Violano for his kind help in the obtention of some of the experimental data.

Supplementary material

11249_2019_1164_MOESM1_ESM.pdf (164 kb)
Electronic supplementary material 1 (PDF 164 kb)


  1. 1.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1958)Google Scholar
  2. 2.
    Johnson, K.L., Kendall, K., Roberts, A.D.: Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A 324, 301–313 (1971)CrossRefGoogle Scholar
  3. 3.
    Fuller, K.N., Tabor, D.: The effect of surface roughness on the adhesion of elastic solids. Proc. R. Soc. A 345, 327–342 (1975)CrossRefGoogle Scholar
  4. 4.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. Lond. A. 295(1442), 300–319 (1966)CrossRefGoogle Scholar
  5. 5.
    Romero, V., Wandersman, E., Debrégeas, G., Prevost, A.: Probing locally the onset of slippage at a model multi-contact interface. Phys. Rev. Lett. 112, 094301 (2014)CrossRefGoogle Scholar
  6. 6.
    Yashima, S., Romero, V., Wandersman, E., Frétigny, C., Chaudhury, M.K., Chateauminois, A., Prévost, A.M.: Normal contact and friction of rubber with model randomly rough surfaces. Soft Matter 11, 871–881 (2015)CrossRefGoogle Scholar
  7. 7.
    Verneuil, E., Ladoux, B., Buguin, A., Silberzan, P.: Adhesion on microstructured surfaces. J. Adhes. 83, 449–472 (2007)CrossRefGoogle Scholar
  8. 8.
    Palchesko, R.N., Zhang, L., Sun, Y., Feinberg, A.W.: Development of polydimethylsiloxane substrates with tunable elastic modulus to study cell mechanobiology in muscle and nerve. PLoS ONE 7(12), e51499 (2012)CrossRefGoogle Scholar
  9. 9.
    Piccardo, M., Chateauminois, A., Frétigny, C., Pugno, N.M., Sitti, M.: Contact compliance effects in the frictional response of bioinspired fibrillar adhesives. J. R. Soc. Interface 10, 20130182 (2013)CrossRefGoogle Scholar
  10. 10.
    Deruelle, M., Hervet, H., Jandeau, G., Léger, L.: Some remarks on JKR experiments. J. Adhes. Sci. Technol. 12(2), 225–247 (1998)CrossRefGoogle Scholar
  11. 11.
    Maugis, D., Barquins, M.: Fracture mechanics and the adherence of viscoelastic bodies. J. Phys. D 11, 1989–2023 (1978)CrossRefGoogle Scholar
  12. 12.
    Ciavarella, M., Greenwood, J.A., Paggi, M.: Inclusion of “interaction” in the Greenwood and Williamson contact theory. Wear 265, 729–734 (2008)CrossRefGoogle Scholar
  13. 13.
    Barquins, M., Maugis, D.: Cinétique de propagation de fissure et adhérence de solides viscoélastiques. C. R. l’Acad. Sci. Paris B 285, 125–128 (1977)Google Scholar
  14. 14.
    Barthel, E., Frétigny, C.: Adhesive contact of elastomers: effective adhesion energy and creep function. J. Phys. D 42, 195302 (2009)CrossRefGoogle Scholar
  15. 15.
    Hourlier-Fargette, A., Antkowiak, A., Chateauminois, A., Neukirch, S.: Role of uncrosslinked chains in droplets dynamics on silicone elastomers. Soft Matter 13, 3484–3491 (2017)CrossRefGoogle Scholar
  16. 16.
    Amouroux, N., Léger, L.: Effect of dangling chains on adhesion hysteresis of silicone elastomers, probed by JKR test. Langmuir 19, 1396–1401 (2003)CrossRefGoogle Scholar
  17. 17.
    Persson, B.N.J., Sivebaek, I.M., Samoilov, V.N., Zhao, K., Volokitin, A.I., Zhang, Z.: On the origin of Amonton’s friction law. Condensed Matter 20, 395006 (2008)CrossRefGoogle Scholar
  18. 18.
    Degrandi-Contraires, E., Beaumont, A., Restagno, F., Weil, R., Poulard, C., Léger, L.: Cassie-Wenzel-like transition in patterned soft elastomer adhesive contacts. Eur. Phys. Lett. 101, 14001 (2013)CrossRefGoogle Scholar
  19. 19.
    Greenwood, J.A., Tripp, J.H.L.: The elastic contact of rough spheres. J. Appl. Mech. 34, 153 (1967)CrossRefGoogle Scholar
  20. 20.
    Greenwood, J.A.: Reflexions and extensions of the Fuller and Tabor theory of rough surface adhesion. Tribol. Lett. 65, 159 (2017)CrossRefGoogle Scholar
  21. 21.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Soft Matter Sciences and Engineering LaboratoryPSL Research University, Sorbonne Université, ESPCI Paris, CNRSParisFrance
  2. 2.Politecnico di Bari, Centre for Excellence in Computational MechanicsBariItaly
  3. 3.Laboratoire Jean Perrin, CNRS UMR 8237Sorbonne UniversitéParisFrance

Personalised recommendations