Advertisement

Tribology Letters

, 67:44 | Cite as

Anisotropy in Nanoscale Friction and Wear of Precipitate Containing AZ91 Magnesium Alloy

  • Deepak Kumar
  • Jayant JainEmail author
  • Nitya Nand GosvamiEmail author
Original Paper
  • 78 Downloads

Abstract

In the present study, nanoscale friction and wear behavior of microstructure containing continuous precipitates (CPs) and discontinuous precipitates (DPs) in an aged AZ91 magnesium alloy has been evaluated using atomic force microscopy (AFM). The influence of sliding direction with respect to precipitate alignment on friction and wear response has been examined and is compared with pure magnesium. DP regions showed lowest values of friction and wear, followed by CP regions and pure Mg. In addition, for DP regions, a strong dependence of frictional force and wear on precipitate alignment with respect to the sliding direction was observed. The quantitative difference in measured friction and wear due to direction dependence can be understood with model proposed by Yu et al. and taking into account the effective contact area between the precipitate regions and the AFM probe.

Keywords

AFM Wear volume Frictional force Friction anisotropy AZ91 alloy Discontinuous and continuous precipitates Sliding direction 

Notes

Acknowledgements

JJ would like to thank FIRP-IIT Delhi (Project No. MI1400) and NNG would like to acknowledge SERB (ECR/2016/001014) for financial support.

References

  1. 1.
    Ball, E.A., Prangnell, P.B.: Tensile-compressive yield asymmetries in high strength wrought magnesium alloys. Scripta Metallurgica et Materialia;(United States) 31(2), 111–116 (1994)CrossRefGoogle Scholar
  2. 2.
    Mordike, B.L., Ebert, T.: Magnesium properties-applications potential. Mater. Sci. Eng. A 302(1), 37–45 (2001)CrossRefGoogle Scholar
  3. 3.
    Blau, P.J., Walukas, M.: Sliding friction and wear of magnesium alloy AZ91D produced by two different methods. Tribol. Int. 33(8), 573–579 (2000)CrossRefGoogle Scholar
  4. 4.
    An, J., Li, R.G., Lu, Y., Chen, C.M., Xu, Y., Chen, X., Wang, L.M.: Dry sliding wear behavior of magnesium alloys. Wear 265(1–2), 97–104 (2008)CrossRefGoogle Scholar
  5. 5.
    Crawley, A.F., Milliken, K.S.: Precipitate morphology and orientation relationships in an aged Mg-9% Al-1% Zn-0.3% Mn alloy. Acta Metall. 22(5), 557–562 (1974)CrossRefGoogle Scholar
  6. 6.
    Huang, J.F., Yu, H.Y., Li, Y.B., Cui, H., He, J.P., Zhang, J.S.: Precipitation behaviors of spray formed AZ91 magnesium alloy during heat treatment and their strengthening effect. Mater. Des. 30(3), 440–444 (2009)CrossRefGoogle Scholar
  7. 7.
    Braszczyńska-Malik, K.N.: Discontinuous and continuous precipitation in magnesium–aluminium type alloys. J. Alloys Compds. 477(1–2), 870–876 (2009)CrossRefGoogle Scholar
  8. 8.
    Duly, D., Simon, J.P., Brechet, Y.: On the competition between continuous and discontinuous precipitations in binary Mg Al alloys. Acta Metall. Mater. 43(1), 101–106 (1995)Google Scholar
  9. 9.
    Celotto, S.T.E.M.: TEM study of continuous precipitation in Mg–9 wt% Al–1 wt% Zn alloy. Acta Mater. 48(8), 1775–1787 (2000)CrossRefGoogle Scholar
  10. 10.
    Nie, J.F., Xiao, X.L., Luo, C.P., Muddle, B.C.: Characterisation of precipitate phases in magnesium alloys using electron microdiffraction. Micron 32(8), 857–863 (2001)CrossRefGoogle Scholar
  11. 11.
    Braszczynska, K.: Precipitates of c—Mg17Al12 phase in AZ91 Alloy. In: Czerwinski, F. (ed.) Magnesium Alloys—Design, Processing and Properties, pp. 95–112. InTech, Rijeka, Croatia (2011)Google Scholar
  12. 12.
    Zhang, M., Kelly, P.M.: Crystallography of Mg17Al12 precipitates in AZ91D alloy. Scr. Mater. 48(5), 647–652 (2003)CrossRefGoogle Scholar
  13. 13.
    Uematsu, Y., Tokaji, K., Matsumoto, M.: Effect of aging treatment on fatigue behaviour in extruded AZ61 and AZ80 magnesium alloys. Mater. Sci. Eng. 517(1–2), 138–145 (2009)CrossRefGoogle Scholar
  14. 14.
    Li, Z.Z., Yang, Y.Q., Zhang, Z.M.: Transformation mechanism of lamellar microstructure of AZ80 wrought Mg alloy during warm deformation. Trans. Nonferr. Met. Soc. China 18, s156–s159 (2008)CrossRefGoogle Scholar
  15. 15.
    Lai, W.J., Li, Y.Y., Hsu, Y.F., Trong, S., Wang, W.H.: Aging behaviour and precipitate morphologies in Mg–7.7 Al–0.5 Zn–0.3 Mn (wt%) alloy. J. Alloys Compds 476(1–2), 118–124 (2009)CrossRefGoogle Scholar
  16. 16.
    Totten, G.E., Xie, L., Funatani, K.: Handbook of Mechanical Alloy Design, pp. 487–538. Marcel Dekker Inc., New York (2004)Google Scholar
  17. 17.
    Yuan, Y., Ma, A., Jiang, J., Lu, F., Jian, W., Song, D., Zhu, Y.T.: Optimizing the strength and ductility of AZ91 Mg alloy by ECAP and subsequent aging. Mater. Sci. Eng. 588, 329–334 (2013)CrossRefGoogle Scholar
  18. 18.
    Kim, W.J., Jeong, H.G., Jeong, H.T.: Achieving high strength and high ductility in magnesium alloys using severe plastic deformation combined with low-temperature aging. Scripta Mater. 61(11), 1040–1043 (2009)CrossRefGoogle Scholar
  19. 19.
    Nautiyal, P., Jain, J., Agarwal, A.: Influence of microstructure on scratch-induced deformation mechanisms in AZ80 magnesium alloy. Tribol. Lett. 61(3), 29 (2016)CrossRefGoogle Scholar
  20. 20.
    Aung, N.N., Zhou, W., Lim, L.E.N.: Wear behaviour of AZ91D alloy at low sliding speeds. Wear 265(5–6), 780–786 (2008)CrossRefGoogle Scholar
  21. 21.
    Kumar, S., Kumar, D., Jain, J., Hirwani, J.K.: Influence of load, sliding speed, and microstructure on wear response of AZ91 Mg alloy. Proc. Inst. Mech. Eng. Part J 230(12), 1462–1469 (2016)CrossRefGoogle Scholar
  22. 22.
    Carpick, R.W., Salmeron, M.: Scratching the surface: fundamental investigations of tribology with atomic force microscopy. Chem. Rev. 97(4), 1163–1194 (1997)CrossRefGoogle Scholar
  23. 23.
    Weymouth, A.J., Meuer, D., Mutombo, P., Wutscher, T., Ondracek, M., Jelinek, P., Giessibl, F.J.: Atomic structure affects the directional dependence of friction. Phys. Rev. Lett. 111(12), 126103 (2013)CrossRefGoogle Scholar
  24. 24.
    Marchetto, D., Rota, A., Calabri, L., Gazzadi, G.C., Menozzi, C., Valeri, S.: AFM investigation of tribological properties of nano-patterned silicon surface. Wear 265(5–6), 577–582 (2008)CrossRefGoogle Scholar
  25. 25.
    Gosvami, N.N., Ma, J., Carpick, R.W.: An in situ method for simultaneous friction measurements and imaging of interfacial tribochemical film growth in lubricated contacts. Tribol. Lett. 66(4), 154 (2018)CrossRefGoogle Scholar
  26. 26.
    Sader, J.E., Larson, I., Mulvaney, P., White, L.R.: Method for the calibration of atomic force microscope cantilevers. Rev. Sci. Instrum. 66(7), 3789–3798 (1995)CrossRefGoogle Scholar
  27. 27.
    Green, C.P., Lioe, H., Cleveland, J.P., Proksch, R., Mulvaney, P., Sader, J.E.: Normal and torsional spring constants of atomic force microscope cantilevers. Rev. Sci. Instrum. 75(6), 1988–1996 (2004)CrossRefGoogle Scholar
  28. 28.
    Hertz, H.: H. Hertz, J. Reine Angew. Math. 92, 156 (1881). J. Reine Angew. Math. 92, 156 (1881)Google Scholar
  29. 29.
    Yu, C., Wang, Q.J.: Friction anisotropy with respect to topographic orientation. Sci. Rep. 2, 988 (2012)CrossRefGoogle Scholar
  30. 30.
    Yamamoto, Y., Hashimoto, M.: Friction and wear of water lubricated PEEK and PPS sliding contacts: Part 2. Composites with carbon or glass fibre. Wear 257(1–2), 181–189 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of Materials Science and EngineeringIndian Institute of Technology DelhiNew DelhiIndia

Personalised recommendations