Advertisement

Tribology Letters

, 67:48 | Cite as

Investigation of the Mechanics, Composition, and Functional Behavior of Thick Tribofilms Formed from Silicon- and Oxygen-Containing Hydrogenated Amorphous Carbon

  • J. B. McClimon
  • A. C. Lang
  • Z. Milne
  • N. Garabedian
  • A. C. Moore
  • J. Hilbert
  • F. Mangolini
  • J. R. Lukes
  • D. L. Burris
  • M. L. Taheri
  • J. Fontaine
  • R. W. CarpickEmail author
Original Paper
  • 77 Downloads

Abstract

A custom-grown silicon and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) film is subjected to ball-on-flat tribometry under controlled sliding environments (ambient, dry air, and dry N2) at room temperature using a 52100 steel ball. The resulting friction coefficient is below 0.2 in ambient air and below 0.1 in dry N2. Tribofilms on the steel ball with thicknesses in excess of 500 nm are observed. The tribofilms are derived from the a-C:H:Si:O and grow on the steel ball, and display chemical and structural modifications relative to the original a-C:H:Si:O film. Sliding of the tribofilm-coated steel ball against bare silicon results in low friction, highlighting the inherent lubricity afforded by the tribofilm. Tribofilms grown through sliding against a-C:H:Si:O are characterized, post-sliding, with multiple spectroscopic and imaging techniques which collectively demonstrate that the composition and structure of the tribofilm is strongly dependent on the sliding environment. The unusually high tribofilm thickness allows for nanoindentation analysis, which demonstrates that the films are laterally heterogenous and softer than the original a-C:H:Si:O, with moduli and hardness values ranging over three orders of magnitude. Many regions of the tribofilms are extremely soft, with measured hardness values below 100 MPa and reduced Young’s moduli below 1 GPa, and also show a viscous mechanical response. Transmission electron microscopy and electron energy loss spectroscopy (TEM/EELS) characterization of the tribofilm demonstrates that the bulk structure is not graphitic, and indicates the tribofilms are enriched in C−H bonding. Additionally, there is a marked segregation within the tribofilm of Si/O and carbon. It is proposed that a primarily polymeric tribofilm structure can explain the observed mechanical properties.

Keywords

Diamond-like carbon Silicon and oxygen-containing hydrogenated amorphous carbon (a-C:H:Si:O) Hydrogenated amorphous carbon (a-C:H) Tribofilm Transfer film Nanoindentation 

Notes

Acknowledgements

This material is based upon work supported by the Advanced Storage Technology Consortium ASTC (Grant 2011-012), the National Science Foundation under Grant No. DMR-1107642, the National Science Foundation through the University of Pennsylvania Materials Research Science and Engineering Center (MRSEC) (DMR-1720530), and by the Agence Nationale de la Recherche under Grant No. ANR-11- NS09-01 through the Materials World Network program. Additional travel support was provided by Programme Avenir Lyon-Saint-Etienne and Region Rhône-Alpes. NSF Major Research Instrumentation Grant DMR-0923245 and use of the Scanning and Local Probe Facility of the Singh Center for Nanotechnology, which is supported by the NSF National Nanotechnology Coordinated Infrastructure Program under grant NNCI-1542153, are acknowledged. J.B.M. acknowledges support of a Graduate Research Supplement for Veterans from the Directorate for Mathematical and Physical Sciences at the National Science Foundation. MLT and ACL gratefully acknowledge funding from the National Science Foundation Major Instrumentation Award #1429661. The authors would like to thank Prof. Kevin Turner for use of the Hysitron TI-950 Triboindenter and Dr. Yijie Jiang for extensive training and assistance in the use of the indenter. The authors would also like to thank Michel Belin and Dr. Komlavi Dzidula Koshigan for instruction and advice in the use of the environmental tribometer. F.M. acknowledges support from the Marie Curie International Outgoing Fellowship for Career Development within the 7th European Community Framework Program under contract no. PIOF-GA-2012-328776 and the Marie Skłodowska-Curie Individual Fellowship within the European Union’s Horizon 2020 Program under contract no. 706289. The acquisition of the instrumentation used for this work was partially supported by the U.S. Department of Defense DURIP program under Air Force Grant FA9550-16-1-0525.

Supplementary material

11249_2019_1155_MOESM1_ESM.docx (14.3 mb)
Supplementary material 1 (DOCX 14620 kb)

References

  1. 1.
    Ferrari, A.C.: Diamond-like carbon for magnetic storage disks. Surf. Coat. Technol. 180–181, 190–206 (2004).  https://doi.org/10.1016/j.surfcoat.2003.10.146 CrossRefGoogle Scholar
  2. 2.
    Hainsworth, S.V., Uhure, N.J.: Diamond like carbon coatings for tribology: production techniques, characterisation methods and applications. Int. Mater. Rev. 52, 153–174 (2007).  https://doi.org/10.1179/174328007X160272 CrossRefGoogle Scholar
  3. 3.
    Donnet, C., Erdemir, A.: Tribology of diamond-like carbon films fundamentals and applications. Springer, New York (2008)CrossRefGoogle Scholar
  4. 4.
    Grischke, M., Bewilogua, K., Trojan, K., Dimigen, H.: Application-oriented modifications of deposition processes for diamond-like-carbon-based coatings. Surf. Coat. Technol. 74, 739–745 (1995).  https://doi.org/10.1016/0257-8972(94)08201-4 CrossRefGoogle Scholar
  5. 5.
    Visser, S.A., Hewitt, C.E., Fornalik, J., Braunstein, G., Srividya, C., Babu, S.V.: Compositions and surface energies of plasma-deposited multilayer fluorocarbon thin films. Surf. Coat. Technol. 96, 210–222 (1997).  https://doi.org/10.1016/S0257-8972(97)00112-6 CrossRefGoogle Scholar
  6. 6.
    Allen, M., Myer, B., Rushton, N.: In vitro and in vivo investigations into the biocompatibility of diamond-like carbon (DLC) coatings for orthopedic applications. J. Biomed. Mater. Res. 58, 319–328 (2001).  https://doi.org/10.1002/1097-4636(2001)58:3%3C319::AID-JBM1024%3E3.0.CO;2-F CrossRefGoogle Scholar
  7. 7.
    Koshigan, K.D., Mangolini, F., McClimon, J.B., Vacher, B., Bec, S., Carpick, R.W., Fontaine, J.: Understanding the hydrogen and oxygen gas pressure dependence of the tribological properties of silicon oxide–doped hydrogenated amorphous carbon coatings. Carbon. 93, 851–860 (2015).  https://doi.org/10.1016/j.carbon.2015.06.004 CrossRefGoogle Scholar
  8. 8.
    Yang, W.J., Choa, Y.-H., Sekino, T., Shim, K.B., Niihara, K., Auh, K.H.: Thermal stability evaluation of diamond-like nanocomposite coatings. Thin Solid Films. 434, 49–54 (2003).  https://doi.org/10.1016/S0040-6090(03)00466-8 CrossRefGoogle Scholar
  9. 9.
    Mangolini, F., McClimon, J.B., Segersten, J., Hilbert, J., Heaney, P., Lukes, J.R., Carpick, R.W.: Silicon oxide-rich diamond-like carbon: a conformal, ultrasmooth thin film material with high thermo-oxidative stability. Adv. Mater. Interfaces. 0, 1801416.  https://doi.org/10.1002/admi.201801416
  10. 10.
    Mangolini, F., Rose, F., Hilbert, J., Carpick, R.W.: Thermally induced evolution of hydrogenated amorphous carbon. Appl. Phys. Lett. 103, 161605 (2013).  https://doi.org/10.1063/1.4826100 CrossRefGoogle Scholar
  11. 11.
    Konicek, A.R.: Influence of surface passivation on the friction and wear behavior of ultrananocrystalline diamond and tetrahedral amorphous carbon thin films. Phys. Rev. B 85, (2012).  https://doi.org/10.1103/PhysRevB.85.155448
  12. 12.
    Donnet, C., Fontaine, J., Grill, A., Mogne, T.L.: The role of hydrogen on the friction mechanism of diamond-like carbon films. Tribol. Lett. 9, 137–142 (2001).  https://doi.org/10.1023/A:1018800719806 CrossRefGoogle Scholar
  13. 13.
    Qi, Y., Konca, E., Alpas, A.T.: Atmospheric effects on the adhesion and friction between non-hydrogenated diamond-like carbon (DLC) coating and aluminum—a first principles investigation. Surf. Sci. 600, 2955–2965 (2006).  https://doi.org/10.1016/j.susc.2006.05.008 CrossRefGoogle Scholar
  14. 14.
    Cui, L., Lu, Z., Wang, L.: Probing the low-friction mechanism of diamond-like carbon by varying of sliding velocity and vacuum pressure. Carbon. 66, 259–266 (2014).  https://doi.org/10.1016/j.carbon.2013.08.065 CrossRefGoogle Scholar
  15. 15.
    Romero, P.A., Pastewka, L., Lautz, J.V., Moseler, M.: Surface passivation and boundary lubrication of self-mated tetrahedral amorphous carbon asperities under extreme tribological conditions. Friction. 2, 193–208 (2014).  https://doi.org/10.1007/s40544-014-0057-z CrossRefGoogle Scholar
  16. 16.
    Wang, L., Cui, L., Lu, Z., Zhou, H.: Understanding the unusual friction behavior of hydrogen-free diamond-like carbon films in oxygen atmosphere by first-principles calculations. Carbon. 100, 556–563 (2016).  https://doi.org/10.1016/j.carbon.2016.01.060 CrossRefGoogle Scholar
  17. 17.
    Kajita, S., Righi, M.C.: A fundamental mechanism for carbon-film lubricity identified by means of ab initio molecular dynamics. Carbon.  https://doi.org/10.1016/j.carbon.2016.02.078
  18. 18.
    Matta, C., Eryilmaz, O.L., Bouchet, M.I.D.B., Erdemir, A., Martin, J.M., Nakayama, K.: On the possible role of triboplasma in friction and wear of diamond-like carbon films in hydrogen-containing environments. J. Phys. Appl. Phys. 42, 075307 (2009).  https://doi.org/10.1088/0022-3727/42/7/075307 CrossRefGoogle Scholar
  19. 19.
    Konicek, A.R.: Origin of Ultralow Friction and Wear in Ultrananocrystalline Diamond. Phys. Rev. Lett. 100, (2008).  https://doi.org/10.1103/PhysRevLett.100.235502
  20. 20.
    Liu, Y., Erdemir, A., Meletis, E.I.: An investigation of the relationship between graphitization and frictional behavior of DLC coatings. Surf. Coat. Technol. 86, 564–568 (1996).  https://doi.org/10.1016/S0257-8972(96)03057-5 CrossRefGoogle Scholar
  21. 21.
    Scharf, T.W., Ohlhausen, J.A., Tallant, D.R., Prasad, S.V.: Mechanisms of friction in diamondlike nanocomposite coatings. J. Appl. Phys. 101, 063521–063521 (2007).  https://doi.org/10.1063/1.2711147 CrossRefGoogle Scholar
  22. 22.
    Ahn, H.-S., Chizhik, S.A., Dubravin, A.M., Kazachenko, V.P., Popov, V.V.: Application of phase contrast imaging atomic force microscopy to tribofilms on DLC coatings. Wear. 249, 617–625 (2001).  https://doi.org/10.1016/S0043-1648(01)00694-9 CrossRefGoogle Scholar
  23. 23.
    Rabbani, F.: Phenomenological evidence for the wear-induced graphitization model of amorphous hydrogenated carbon coatings. Surf. Coat. Technol. 184, 194–207 (2004).  https://doi.org/10.1016/j.surfcoat.2003.11.006 CrossRefGoogle Scholar
  24. 24.
    Kunze, T., Posselt, M., Gemming, S., Seifert, G., Konicek, A.R., Carpick, R.W., Pastewka, L., Moseler, M.: Wear, Plasticity, and Rehybridization in Tetrahedral Amorphous Carbon. Tribol. Lett. 53, 119–126 (2014).  https://doi.org/10.1007/s11249-013-0250-7 CrossRefGoogle Scholar
  25. 25.
    Chen, X., Zhang, C., Kato, T., Yang, X., Wu, S., Wang, R., Nosaka, M., Luo, J.: Evolution of tribo-induced interfacial nanostructures governing superlubricity in a-C:H and a-C:H:Si films. Nat. Commun. 8, 1675 (2017).  https://doi.org/10.1038/s41467-017-01717-8 CrossRefGoogle Scholar
  26. 26.
    Goto, M., Ito, K., Fontaine, J., Takeno, T., Miki, H., Takagi, T.: Formation Processes of Metal-Rich Tribofilm on the Counterface During Sliding Against Metal/Diamondlike-Carbon Nanocomposite Coatings. Tribol. Online. 10, 306–313 (2015).  https://doi.org/10.2474/trol.10.306 CrossRefGoogle Scholar
  27. 27.
    Qin, W., Yue, W., Wang, C.: Understanding integrated effects of humidity and interfacial transfer film formation on tribological behaviors of sintered polycrystalline diamond. RSC Adv. 5, 53484–53496 (2015).  https://doi.org/10.1039/C5RA09327A CrossRefGoogle Scholar
  28. 28.
    Zhang, X., Schneider, R., Müller, E., Mee, M., Meier, S., Gumbsch, P., Gerthsen, D.: Electron microscopic evidence for a tribologically induced phase transformation as the origin of wear in diamond. J. Appl. Phys. 115, 063508 (2014).  https://doi.org/10.1063/1.4865742 CrossRefGoogle Scholar
  29. 29.
    De Barros Bouchet, M.I., Matta, C., Vacher, B., Le-Mogne, T., Martin, J.M., von Lautz, J., Ma, T., Pastewka, L., Otschik, J., Gumbsch, P., Moseler, M.: Energy filtering transmission electron microscopy and atomistic simulations of tribo-induced hybridization change of nanocrystalline diamond coating. Carbon. 87, 317–329 (2015).  https://doi.org/10.1016/j.carbon.2015.02.041 CrossRefGoogle Scholar
  30. 30.
    Fontaine, J., Loubet, J.L., Mogne, T.L., Grill, A.: Superlow friction of diamond-like carbon films: a relation to viscoplastic properties. Tribol. Lett. 17, 709–714 (2004).  https://doi.org/10.1007/s11249-004-8077-x CrossRefGoogle Scholar
  31. 31.
    Menčík, J., Rauchs, G., Bardon, J., Riche, A.: Determination of elastic modulus and hardness of viscoelastic-plastic materials by instrumented indentation under harmonic load. J. Mater. Res. 20, 2660–2669 (2005).  https://doi.org/10.1557/JMR.2005.0338 CrossRefGoogle Scholar
  32. 32.
    Langford, R.M., Petford-Long, A.K.: Preparation of transmission electron microscopy cross-section specimens using focused ion beam milling. J. Vac. Sci. Technol. A. 19, 2186–2193 (2001).  https://doi.org/10.1116/1.1378072 CrossRefGoogle Scholar
  33. 33.
    Hart, J.L., Lang, A.C., Leff, A.C., Longo, P., Trevor, C., Twesten, R.D., Taheri, M.L.: Direct Detection Electron Energy-Loss Spectroscopy: A Method to Push the Limits of Resolution and Sensitivity. Sci. Rep. 7, 8243 (2017).  https://doi.org/10.1038/s41598-017-07709-4 CrossRefGoogle Scholar
  34. 34.
    Ponsonnet, L., Donnet, C., Varlot, K., Martin, J.M., Grill, A., Patel, V.: EELS analysis of hydrogenated diamond-like carbon films. Thin Solid Films. 319, 97–100 (1998).  https://doi.org/10.1016/S0040-6090(97)01094-8 CrossRefGoogle Scholar
  35. 35.
    Varlot, K., Martin, J.M., Quet, C., Kihn, Y.: Towards sub-nanometer scale EELS analysis of polymers in the TEM. Ultramicroscopy. 68, 123–133 (1997).  https://doi.org/10.1016/S0304-3991(97)00019-3 CrossRefGoogle Scholar
  36. 36.
    Egerton, R.F.: Electron energy-loss spectroscopy in the TEM. Rep. Prog. Phys. 72, 016502 (2009).  https://doi.org/10.1088/0034-4885/72/1/016502 CrossRefGoogle Scholar
  37. 37.
    Donnet, C., Mogne, T.L., Ponsonnet, L., Belin, M., Grill, A., Patel, V., Jahnes, C.: The respective role of oxygen and water vapor on the tribology of hydrogenated diamond-like carbon coatings. Tribol. Lett. 4, 259–265 (1998).  https://doi.org/10.1023/A:1019140213257 CrossRefGoogle Scholar
  38. 38.
    Holmberg, K., Mathews, A.: Coatings tribology: a concept, critical aspects and future directions. Thin Solid Films. 253, 173–178 (1994).  https://doi.org/10.1016/0040-6090(94)90315-8 CrossRefGoogle Scholar
  39. 39.
    Liu, S., Zhang, C., Osman, E., Chen, X., Ma, T., Hu, Y., Luo, J., Ali, E.: Influence of tribofilm on superlubricity of highly-hydrogenated amorphous carbon films in inert gaseous environments. Sci. China Technol. Sci. 1–9 (2016).  https://doi.org/10.1007/s11431-016-0078-6
  40. 40.
    Wang, P., Hirose, M., Suzuki, Y., Adachi, K.: Carbon tribo-layer for super-low friction of amorphous carbon nitride coatings in inert gas environments. Surf. Coat. Technol. 221, 163–172 (2013).  https://doi.org/10.1016/j.surfcoat.2013.01.045 CrossRefGoogle Scholar
  41. 41.
    Salvaro, D.B., Silvério, M., Binder, C., Giacomelli, R.O., Klein, A.N., de Mello, J.D.B.: Genesis and stability of tribolayers in solid lubrication: case of pair DLC-stainless steel. J. Mater. Res. Technol. 5, 136–143 (2016).  https://doi.org/10.1016/j.jmrt.2015.10.008 CrossRefGoogle Scholar
  42. 42.
    Benedet, J., Green, J.H., Lamb, G.D., Spikes, H.A.: Spurious Mild Wear Measurement Using White Light Interference Microscopy in the Presence of Antiwear Films. Tribol. Trans. 52, 841–846 (2009).  https://doi.org/10.1080/10402000903180696 CrossRefGoogle Scholar
  43. 43.
    Shuman, D.J., Costa, A.L.M., Andrade, M.S.: Calculating the elastic modulus from nanoindentation and microindentation reload curves. Mater. Charact. 58, 380–389 (2007).  https://doi.org/10.1016/j.matchar.2006.06.005 CrossRefGoogle Scholar
  44. 44.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564–1583 (1992).  https://doi.org/10.1557/JMR.1992.1564 CrossRefGoogle Scholar
  45. 45.
    Saraswati, T., Sritharan, T., Mhaisalkar, S., Breach, C.D., Wulff, F.: Cyclic loading as an extended nanoindentation technique. Mater. Sci. Eng. A. 423, 14–18 (2006).  https://doi.org/10.1016/j.msea.2005.10.080 CrossRefGoogle Scholar
  46. 46.
    Chen, Z., Diebels, S., Peter, N.J., Schneider, A.S.: Identification of finite viscoelasticity and adhesion effects in nanoindentation of a soft polymer by inverse method. Comput. Mater. Sci. 72, 127–139 (2013).  https://doi.org/10.1016/j.commatsci.2013.01.040 CrossRefGoogle Scholar
  47. 47.
    Pathak, S., Cambaz, Z.G., Kalidindi, S.R., Swadener, J.G., Gogotsi, Y.: Viscoelasticity and high buckling stress of dense carbon nanotube brushes. Carbon. 47, 1969–1976 (2009).  https://doi.org/10.1016/j.carbon.2009.03.042 CrossRefGoogle Scholar
  48. 48.
    Chang, B.T.-A., Li, J.C.M.: Indentation recovery of amorphous materials. Scr. Metall. 13, 51–54 (1979).  https://doi.org/10.1016/0036-9748(79)90388-0 CrossRefGoogle Scholar
  49. 49.
    Thompson, J.B., Kindt, J.H., Drake, B., Hansma, H.G., Morse, D.E., Hansma, P.K.: Bone indentation recovery time correlates with bond reforming time. Nature. 414, 773–776 (2001).  https://doi.org/10.1038/414773a CrossRefGoogle Scholar
  50. 50.
    Adams, M.J., Gorman, D.M., Johnson, S.A., Briscoe, B.J.: Indentation depth recovery in poly(methyl methacrylate) sheet on the microlength scale. Philos. Mag. A. 82, 2121–2131 (2002).  https://doi.org/10.1080/01418610208235722 CrossRefGoogle Scholar
  51. 51.
    Guin, J.-P., Rouxel, T., Keryvin, V., Sanglebœuf, J.-C., Serre, I., Lucas, J.: Indentation creep of Ge–Se chalcogenide glasses below Tg: elastic recovery and non-Newtonian flow. J. Non-Cryst. Solids. 298, 260–269 (2002).  https://doi.org/10.1016/S0022-3093(01)01053-5 CrossRefGoogle Scholar
  52. 52.
    Golovin, Y.I., Ivolgin, V.I., Ryabko, R.I.: Viscoelastic recovery of various materials in the region of a dynamic nanocontact. Tech. Phys. Lett. 30, 202–204 (2004).  https://doi.org/10.1134/1.1707167 CrossRefGoogle Scholar
  53. 53.
    Tweedie, C.A., Van Vliet, K.J.: On the indentation recovery and fleeting hardness of polymers. J. Mater. Res. 21, 3029–3036 (2006).  https://doi.org/10.1557/jmr.2006.0377 CrossRefGoogle Scholar
  54. 54.
    Trunov, M.L., Bilanich, V.S., Dub, S.N.: Nanoindentation study of the time-dependent mechanical behavior of materials. Tech. Phys. 52, 1298–1305 (2007).  https://doi.org/10.1134/S1063784207100088 CrossRefGoogle Scholar
  55. 55.
    Golovin, Y.I.: Nanoindentation and mechanical properties of solids in submicrovolumes, thin near-surface layers, and films. A Review. Phys. Solid State. 50, 2205–2236 (2008).  https://doi.org/10.1134/S1063783408120019 CrossRefGoogle Scholar
  56. 56.
    Bec, S., Tonck, A., Fontaine, J.: Nanoindentation and nanofriction on DLC films. Philos. Mag. 86, 5465–5476 (2006).  https://doi.org/10.1080/14786430600596845 CrossRefGoogle Scholar
  57. 57.
    Walter, C., Mitterer, C.: 3D versus 2D finite element simulation of the effect of surface roughness on nanoindentation of hard coatings. Surf. Coat. Technol. 203, 3286–3290 (2009).  https://doi.org/10.1016/j.surfcoat.2009.04.006 CrossRefGoogle Scholar
  58. 58.
    Kim, J.-Y., Lee, J.-J., Lee, Y.-H., Jang, J., Kwon, D.: Surface roughness effect in instrumented indentation: A simple contact depth model and its verification. J. Mater. Res. 21, 2975–2978 (2006).  https://doi.org/10.1557/jmr.2006.0370 CrossRefGoogle Scholar
  59. 59.
    Bobji, M.S., Biswas, S.K., Pethica, J.B.: Effect of roughness on the measurement of nanohardness—a computer simulation study. Appl. Phys. Lett. 71, 1059–1061 (1997).  https://doi.org/10.1063/1.119727 CrossRefGoogle Scholar
  60. 60.
    Lucas, B.N., Oliver, W.C., Pharr, G.M., Loubet, J.L.: Time Dependent Deformation During Indentation Testing. In: Symposium CC—Thin Films Stresses and Mechanical Properties VI: (1996)Google Scholar
  61. 61.
    Chong, A.C.M., Lam, D.C.C.: Strain gradient plasticity effect in indentation hardness of polymers. J. Mater. Res. 14, 4103–4110 (1999).  https://doi.org/10.1557/JMR.1999.0554 CrossRefGoogle Scholar
  62. 62.
    Lam, D.C.C., Chong, A.C.M.: Indentation model and strain gradient plasticity law for glassy polymers. J. Mater. Res. 14, 3784–3788 (1999).  https://doi.org/10.1557/JMR.1999.0512 CrossRefGoogle Scholar
  63. 63.
    Zhang, T.-Y., Xu, W.-H.: Surface Effects on Nanoindentation. J. Mater. Res. 17, 1715–1720 (2002).  https://doi.org/10.1557/JMR.2002.0254 CrossRefGoogle Scholar
  64. 64.
    Cordill, M.J., Lund, M.S., Parker, J., Leighton, C., Nair, A.K., Farkas, D., Moody, N.R., Gerberich, W.W.: The Nano-Jackhammer effect in probing near-surface mechanical properties. Int. J. Plast. 25, 2045–2058 (2009).  https://doi.org/10.1016/j.ijplas.2008.12.015 CrossRefGoogle Scholar
  65. 65.
    Siu, K.W., Ngan, A.H.W.: The continuous stiffness measurement technique in nanoindentation intrinsically modifies the strength of the sample. Philos. Mag. 93, 449–467 (2013).  https://doi.org/10.1080/14786435.2012.722234 CrossRefGoogle Scholar
  66. 66.
    Cordill, M.J., Moody, N.R., Gerberich, W.W.: Effects of dynamic indentation on the mechanical response of materials. J. Mater. Res. 23, 1604–1613 (2008).  https://doi.org/10.1557/JMR.2008.0205 CrossRefGoogle Scholar
  67. 67.
    Fielda, J.S., Swain, M.V.: The indentation characterisation of the mechanical properties of various carbon materials: Glassy carbon, coke and pyrolytic graphite. Carbon. 34, 1357–1366 (1996).  https://doi.org/10.1016/S0008-6223(96)00071-1 CrossRefGoogle Scholar
  68. 68.
    Sakai, M., Nakano, Y.: Instrumented pyramidal and spherical indentation of polycrystalline graphite. J. Mater. Res. 19, 228–236 (2004).  https://doi.org/10.1557/jmr.2004.19.1.228 CrossRefGoogle Scholar
  69. 69.
    Fu, W., Chung, D.D.L.: Vibration reduction ability of polymers, particularly polymethylmethacrylate and polytetrafluoroethylene. Polym. Polym. Compos. 9, 423–426 (2001)Google Scholar
  70. 70.
    Fontaine, J., Le Mogne, T., Loubet, J.L., Belin, M.: Achieving superlow friction with hydrogenated amorphous carbon: some key requirements. Thin Solid Films. 482, 99–108 (2005).  https://doi.org/10.1016/j.tsf.2004.11.126 CrossRefGoogle Scholar
  71. 71.
    Hahn, J.R.: Kinetic study of graphite oxidation along two lattice directions. Carbon. 43, 1506–1511 (2005).  https://doi.org/10.1016/j.carbon.2005.01.032 CrossRefGoogle Scholar
  72. 72.
    de Theije, F.K., Roy, O., van der Laag, N.J., van Enckevort, W.J.P.: Oxidative etching of diamond. Diam. Relat. Mater. 9, 929–934 (2000).  https://doi.org/10.1016/S0925-9635(99)00239-3 CrossRefGoogle Scholar
  73. 73.
    Felts, J.R., Oyer, A.J., Hernández, S.C., Whitener, K.E. Jr., Robinson, J.T., Walton, S.G., Sheehan, P.E.: Direct mechanochemical cleavage of functional groups from graphene. Nat. Commun. 6, (2015).  https://doi.org/10.1038/ncomms7467
  74. 74.
    Collom, S.L., Anastas, P.T., Beach, E.S., Crabtree, R.H., Hazari, N., Sommer, T.J.: Differing selectivities in mechanochemical versus conventional solution oxidation using Oxone. Tetrahedron Lett. 54, 2344–2347 (2013).  https://doi.org/10.1016/j.tetlet.2013.02.056 CrossRefGoogle Scholar
  75. 75.
    Conway, N.M.J., Ferrari, A.C., Flewitt, A.J., Robertson, J., Milne, W.I., Tagliaferro, A., Beyer, W.: Defect and disorder reduction by annealing in hydrogenated tetrahedral amorphous carbon. Diam. Relat. Mater. 9, 765–770 (2000).  https://doi.org/10.1016/S0925-9635(99)00271-X CrossRefGoogle Scholar
  76. 76.
    Rose, F., Wang, N., Smith, R., Xiao, Q.-F., Inaba, H., Matsumura, T., Saito, Y., Matsumoto, H., Dai, Q., Marchon, B., Mangolini, F., Carpick, R.W.: Complete characterization by Raman spectroscopy of the structural properties of thin hydrogenated diamond-like carbon films exposed to rapid thermal annealing. J. Appl. Phys. 116, 123516 (2014).  https://doi.org/10.1063/1.4896838 CrossRefGoogle Scholar
  77. 77.
    Ferrari, A.C., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000).  https://doi.org/10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  78. 78.
    Cui, L., Zhou, H., Zhang, K., Lu, Z., Wang, X.: Bias voltage dependence of superlubricity lifetime of hydrogenated amorphous carbon films in high vacuum. Tribol. Int.  https://doi.org/10.1016/j.triboint.2017.08.020
  79. 79.
    Ni, Z.H.: Raman spectroscopy of epitaxial graphene on a SiC substrate. Phys. Rev. B 77, (2008).  https://doi.org/10.1103/PhysRevB.77.115416
  80. 80.
    Swain, B.P.: The analysis of carbon bonding environment in HWCVD deposited a-SiC:H films by XPS and Raman spectroscopy. Surf. Coat. Technol. 201, 1589–1593 (2006).  https://doi.org/10.1016/j.surfcoat.2006.02.029 CrossRefGoogle Scholar
  81. 81.
    Lu, W., Feldman, L.C., Song, Y., Dhar, S., Collins, W.E., Mitchel, W.C., Williams, J.R.: Graphitic features on SiC surface following oxidation and etching using surface enhanced Raman spectroscopy. Appl. Phys. Lett. 85, 3495 (2004).  https://doi.org/10.1063/1.1804610 CrossRefGoogle Scholar
  82. 82.
    Windl, W.: Second-order Raman spectra of SiC: experimental and theoretical results from ab initio phonon calculations. Phys. Rev. B. 49, 8764–8767 (1994).  https://doi.org/10.1103/PhysRevB.49.8764 CrossRefGoogle Scholar
  83. 83.
    Swanson, N., Powell, C.J.: Excitation of π electrons in polystyrene and similar polymers by 20 keV electrons. J. Chem. Phys. 39, 630–634 (1963).  https://doi.org/10.1063/1.1734302 CrossRefGoogle Scholar
  84. 84.
    Ferrari, A.C., Libassi, A., Tanner, B.K., Stolojan, V., Yuan, J., Brown, L.M., Rodil, S.E., Kleinsorge, B., Robertson, J.: Density, sp3 fraction, and cross-sectional structure of amorphous carbon films determined by X-ray reflectivity and electron energy-loss spectroscopy. Phys. Rev. B. 62, 11089–11103 (2000).  https://doi.org/10.1103/PhysRevB.62.11089 CrossRefGoogle Scholar
  85. 85.
    Mangolini, F., Hilbert, J., McClimon, J.B., Lukes, J.R., Carpick, R.W.: Thermally induced structural evolution of silicon- and oxygen-containing hydrogenated amorphous carbon: a combined spectroscopic and molecular dynamics simulation investigation. Langmuir. 34, 2989–2995 (2018).  https://doi.org/10.1021/acs.langmuir.7b04266 CrossRefGoogle Scholar
  86. 86.
    Fukui, H., Irie, M., Utsumi, Y., Oda, K., Ohara, H.: An investigation of the wear track on DLC (a-C:H) film by time-of-flight secondary ion mass spectroscopy. Surf. Coat. Technol. 146–147, 378–383 (2001).  https://doi.org/10.1016/S0257-8972(01)01422-0 CrossRefGoogle Scholar
  87. 87.
    Chen, X., Kato, T., Nosaka, M.: Origin of superlubricity in a-C:H:Si films: a relation to film bonding structure and environmental molecular characteristic. ACS Appl. Mater. Interfaces. 6, 13389–13405 (2014).  https://doi.org/10.1021/am502416w CrossRefGoogle Scholar
  88. 88.
    Liu, Y., Meletis, E.I.: Evidence of graphitization of diamond-like carbon films during sliding wear. J. Mater. Sci. 32, 3491–3495 (1997).  https://doi.org/10.1023/A:1018641304944 CrossRefGoogle Scholar
  89. 89.
    Koshigan, K.D.: Understanding the influence of environment on the solid lubrication processes of carbon-based thin films. Ecully, Ecole centrale de Lyon (2015)Google Scholar
  90. 90.
    Eryilmaz, O.L., Erdemir, A.: Surface analytical investigation of nearly-frictionless carbon films after tests in dry and humid nitrogen. Surf. Coat. Technol. 201, 7401–7407 (2007).  https://doi.org/10.1016/j.surfcoat.2007.02.005 CrossRefGoogle Scholar
  91. 91.
    Sánchez-López, J.C., Belin, M., Donnet, C., Quirós, C., Elizalde, E.: Friction mechanisms of amorphous carbon nitride films under variable environments: a triboscopic study. Surf. Coat. Technol. 160, 138–144 (2002).  https://doi.org/10.1016/S0257-8972(02)00397-3 CrossRefGoogle Scholar
  92. 92.
    Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013).  https://doi.org/10.1007/s10853-012-7038-2 CrossRefGoogle Scholar
  93. 93.
    McGuiggan, P.M., Hsu, S.M., Fong, W., Bogy, D., Bhatia, C.S.: Friction measurements of ultra-thin carbon overcoats in air. J. Tribol. 124, 239–244 (1999).  https://doi.org/10.1115/1.1387035 CrossRefGoogle Scholar
  94. 94.
    Pastewka, L., Robbins, M.O.: Contact area of rough spheres: large scale simulations and simple scaling laws. Appl. Phys. Lett. 108, 221601 (2016).  https://doi.org/10.1063/1.4950802 CrossRefGoogle Scholar
  95. 95.
    Lin, Y.-H.: Polymer Viscoelasticity: Basics, Molecular Theories, Experiments and Simulations. World Scientific Publishing Company, New Jersey (2010)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • J. B. McClimon
    • 1
  • A. C. Lang
    • 2
  • Z. Milne
    • 3
  • N. Garabedian
    • 4
  • A. C. Moore
    • 5
  • J. Hilbert
    • 3
  • F. Mangolini
    • 6
  • J. R. Lukes
    • 3
  • D. L. Burris
    • 4
  • M. L. Taheri
    • 2
  • J. Fontaine
    • 7
  • R. W. Carpick
    • 3
    Email author
  1. 1.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  2. 2.Department of Materials Science and EngineeringDrexel UniversityPhiladelphiaUSA
  3. 3.Department of Mechanical Engineering & Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA
  4. 4.Department of Mechanical EngineeringUniversity of DelawareNewarkUSA
  5. 5.Department of Biomedical EngineeringUniversity of DelawareNewarkUSA
  6. 6.Materials Science and Engineering Program, Department of Mechanical EngineeringThe University of Texas at AustinAustinUSA
  7. 7.Laboratoire de Tribologie et Dynamique des SystèmesEcole Centrale de Lyon, Université de LyonEcully CedexFrance

Personalised recommendations