Tribology Letters

, 67:28 | Cite as

Investigation of PTFE Tribological Properties Using Molecular Dynamics Simulation

  • Deng Pan
  • Bingli Fan
  • Xiaowen Qi
  • Yulin Yang
  • Xiuhong HaoEmail author
Original Paper


Polytetrafluoroethylene (PTFE) has been widely applied in industrial engineering applications. Its tribological behaviors are extensively studied using the experimental method. However, the friction and wear mechanisms of PTFE still need to be investigated from a microscopic point of view. In this study, we established a two-layer PTFE frictional model to simulate the frictional behaviors of PTFE using molecular dynamics (MD) simulation and verified it by experiments. To directly compare the MD simulation results to the experimental results, the motion form, range of the external load, relative velocity, and environmental temperature matched each other as closely as possible. We found that the increment of normal force is faster than that of the friction force with an increase in the external load applied to the upper layer, resulting in an apparent decrease in the friction coefficient and an increase in wear depth. The smaller PTFE fragments correspond to a higher contact temperature for a fixed external load. The higher contact temperature induced a higher mobility increasing the friction force, thereby enhancing the friction coefficient. However, the influence of PTFE fragments on the friction coefficient is unremarkable compared to the external load.


PTFE Friction Load Molecular dynamics simulation 



This project was supported by the National Natural Science Foundation of China (Grant No. 51605418), Natural Science Foundation of Hebei Province (Grant No. E2016203206), and Doctoral Fund of Yanshan University (Grant No. B927).


  1. 1.
    Gong, D., Xue, Q., Wang, H.: Study of the wear of filled polytetrafluoroethylene. Wear 134, 283–295 (1989)CrossRefGoogle Scholar
  2. 2.
    Blanchet, T.A., Kennedy, F.E.: Sliding wear mechanism of poly-tetrafluoroethylene (PTFE) and PTFE composites. Wear 152, 229–243 (1992)CrossRefGoogle Scholar
  3. 3.
    Qiu, M., Yang, Z., Lu, J., Li, Y., Zhou, D.: Influence of step load on tribological properties of self-lubricating radial spherical plain bearings with PTFE fabric liner. Tribol. Int. (2017). CrossRefGoogle Scholar
  4. 4.
    Xiong, D., Qin, Y., Li, J., Wan, Y., Tyagi, R.: Tribological properties of PTFE/laser surface textured stainless steel under starved oil lubrication. Tribol. Int. (2015). CrossRefGoogle Scholar
  5. 5.
    Fragassa, C.: Investigations into the degradation of PTFE surface properties by accelerated aging tests. Tribol. Ind. 38(2), 241–248 (2016)Google Scholar
  6. 6.
    Frankland, S.J.V., Harik, V.M., Odegard, G.M., Brenner, D.W., Gates, T.S.: The stress-strain behavior of polymer–nanotube composites from molecular dynamics simulation. Compos. Sci. Technol. 63(11), 1655–1661 (2003)CrossRefGoogle Scholar
  7. 7.
    Dong, Y., Li, Q., Martini, A.: Molecular dynamics simulation of atomic friction: a review and guide. J. Vac. Sci. Technol. A 31, 030801 (2013)CrossRefGoogle Scholar
  8. 8.
    Ewen, J.P., Heyes, D.M., Dini, D.: Advances in nonequilibrium molecular dynamics simulations of lubricants and additives. Friction (2017). CrossRefGoogle Scholar
  9. 9.
    Ye, J., Moore, A.C., Burris, D.L.: Transfer film tenacity: a case study using ultra-low-wear alumina–PTFE. Tribol. Lett. 59, 50 (2015)CrossRefGoogle Scholar
  10. 10.
    Urueña, J.M., Pitenis, A.A., Harris, K.L., Sawyer, W.G.: Evolution and wear of fluoropolymer transfer films. Tribol. Lett. 57, 9 (2015)CrossRefGoogle Scholar
  11. 11.
    Onodera, T., Nunoshige, J., Kawasaki, K., Adachi, K., Kurihara, K., Kubo, M.: Structure and function of transfer film formed from PTFE/PEEK polymer blend. J. Phys. Chem. C 121, 14589–14596 (2017)CrossRefGoogle Scholar
  12. 12.
    Harris, K.L., Pitenis, A.A., Sawyer, W.G., Krick, B.A., Blackman, G.S., Kasprzak, D.J., Junk, C.P.: PTFE tribology and the role of mechanochemistry in the development of protective surface films. Macromolecules 48, 3739–3745 (2015)CrossRefGoogle Scholar
  13. 13.
    Mclaren, K.G., Tabor, D.: The friction and deformation properties of irradiated polytetrafluoroethylene (PTFE). Wear 8, 3–7 (1965)CrossRefGoogle Scholar
  14. 14.
    Jang, I., Burris, D.L., Dickrell, P.L.: Sliding orientation effects on the tribological properties of polytetrafluoroethylene. J. Appl. Phys. (2007). CrossRefGoogle Scholar
  15. 15.
    Chiu, P.Y., Barry, P.R., Perry, S.S., Sawyer, W.G., Phillpot, S.R., Sinnott, S.B.: Influence of the molecular level structure of polyethylene and polytetrafluoroethylene on their tribological response. Tribol. Lett. 42, 193–201 (2011)CrossRefGoogle Scholar
  16. 16.
    Barry, P.R., Jang, I., Perry, S.S., Sawyer, W.G., Sinnott, S.B., Phillpot, S.R.: Effect of simulation conditions on friction in polytetrafluoroethylene (PTFE). J. Comput. Aided Mater. Des. 14(1), 239–246 (2007)CrossRefGoogle Scholar
  17. 17.
    Barry, P.R., Chiu, P.Y., Perry, S.S., Sawyer, W.G., Sinnott, S.B., Phillpot, S.R.: Effect of temperature on the friction and wear of PTFE by atomic-level simulation. Tribol. Lett. 58, 50 (2015)CrossRefGoogle Scholar
  18. 18.
    Barry, P.R., Chiu, P.Y., Perry, S.S., Sawyer, W.G., Phillpot, S.R., Sinnott, S.B.: The effect of normal load on polytetrafluoroethylene tribology. J. Phys. Condens. Matter 21, 144201 (2009)CrossRefGoogle Scholar
  19. 19.
    Heo, S.J., Jang, I., Barry, P.R., Phillpot, S.R., Perry, S.S., Sawyer, W.G., Sinnott, S.B.: Effect of the sliding orientation on the tribological properties of polyethylene in molecular dynamics simulations. J. Appl. Phys. (2008). CrossRefGoogle Scholar
  20. 20.
    Sun, H.: Ab initio calculations and force field development for computer simulation of polysilanes. Macromolecules 28, 701–712 (1995)CrossRefGoogle Scholar
  21. 21.
    Sun, H., Mumby, S.J., Maple, J.R., Hagler, A.T.: An ab initio CFF93 all-atom force field for polycarbonates. J. Am. Chem. Soc. 116, 2978–2987 (1994)CrossRefGoogle Scholar
  22. 22.
    Zuo, Z., Yang, Y., Qi, X., Su, W., Yang, X.: Analysis of the chemical composition of the PTFE transfer film. Wear (2014). CrossRefGoogle Scholar
  23. 23.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). Accessed 16 Feb 2017
  24. 24.
    Schneider, T., Stoll, E.: Molecular-dynamics study of a three-dimensional one-component model for distortive phase-transitions. Phys. Rev. B 17(3), 1302–1322 (1978)CrossRefGoogle Scholar
  25. 25.
    Gao, Y., Ruestes, C.J., Urbassek, H.M.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. (2014). CrossRefGoogle Scholar
  26. 26.
    Harrison, J.A., White, C.T., Colton, R.J., Brenner, D.W.: Molecular-dynamics simulations of atomic-scale friction of diamond surfaces. Phys. Rev. B 46(15), 9700–9708 (1992)CrossRefGoogle Scholar
  27. 27.
    Yuan, X.-D., Yang, X.-J.: A study on friction and wear properties of PTFE coatings under vacuum conditions. Wear 269, 291–297 (2010)CrossRefGoogle Scholar
  28. 28.
    Biswas, S.K., Vijayan, K.: Friction and wear of PTFE—a review. Wear 158(1–2), 193–211 (1992)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Deng Pan
    • 1
    • 2
  • Bingli Fan
    • 1
    • 2
  • Xiaowen Qi
    • 1
    • 2
  • Yulin Yang
    • 1
    • 2
  • Xiuhong Hao
    • 1
    • 2
    Email author
  1. 1.School of Mechanical EngineeringYanshan UniversityQinhuangdaoChina
  2. 2.Aviation Key Laboratory of Science and Technology on Generic Technology of Self-Lubricating Spherical Plain BearingYanshan UniversityQinhuangdaoChina

Personalised recommendations