Tribology Letters

, 67:26 | Cite as

Diprotic Ammonium Succinate Ionic Liquid in Thin Film Aqueous Lubrication and in Graphene Nanolubricant

  • M. D. Avilés
  • F. J. Carrión-Vilches
  • J. Sanes
  • M. D. BermúdezEmail author
Original Paper


An ammonium succinate protic ionic liquid (PIL) has been used as additive in water and as base lubricant for graphene dispersions in sapphire-stainless steel lubrication. The tribological performance of a water-based lubricant containing the PIL additive di[bis(2-hydroxyethyl)ammonium] succinate (DSu) in 1 wt% proportion (Water + DSu) has been studied. Both neat DSu and Water + DSu lubricants present a high friction coefficient during the running-in period. Elimination of the running-in high friction period has been achieved with a DSu layer generated on the steel surface by evaporation of water, before the sliding begins. This DSu surface layer reduces the wear rate in two orders of magnitude with respect to full-fluid Water + DSu and to neat DSu lubricants. The high friction running-in period can also be eliminated by the addition of 0.05 wt% few-layers graphene (G) to DSu. The new (DSu + 0.05G) nanolubricant also prevents wear and surface damage on stainless steel. Surface interactions are discussed from contact angles, SEM and TEM microscopies, XPS surface analysis, and Raman microscopy results.


Protic ionic liquid Water Thin film Graphene Lubrication Steel Running-in 



The authors acknowledge the Ministerio de Economía, Industria y Competitividad (MINECO, Spain), the EU FEDER Program (Grant # MAT2017-85130-P), “Este trabajo es resultado de la actividad desarrollada en el marco del Programa de Ayudas a Grupos de Excelencia de la Región de Murcia, de la Fundación Séneca, Agencia de Ciencia y Tecnología de la Región de Murcia (Grant # 19877/GERM/15)”. M.D. Avilés is grateful to MINECO for aresearch Grant (BES-2015-074836).


  1. 1.
    Ye, C., Liu, W., Chen, Y., Yu, L.: Room-temperature ionic liquids: a novel versatile lubricant. Chem. Comm. 21, 2244–2245 (2001)CrossRefGoogle Scholar
  2. 2.
    Bermudez, M.D., Jimenez, A.E., Sanes, J., Carrion, F.J.: Ionic liquids as advanced lubricant fluids. Molecules 14, 2888–2908 (2009)CrossRefGoogle Scholar
  3. 3.
    Minami, I.: Ionic liquids in tribology. Molecules 14, 2286–2305 (2009)CrossRefGoogle Scholar
  4. 4.
    Zhou, F., Liang, Y.M., Liu, W.M.: Ionic liquid lubricants: designed chemistry for engineering applications. Chem. Soc. Rev. 38, 2590–2599 (2009)CrossRefGoogle Scholar
  5. 5.
    Torimoto, T., Tsuda, T., Okazaki, K., Kuwabata, S.: New frontiers in materials science opened by ionic liquids. Adv. Mater. 22, 1122–1126 (2010)CrossRefGoogle Scholar
  6. 6.
    Schlucker, E., Wasserscheid, P.: Ionic liquids in mechanical engineering. Chem. Ing. Tech. 83, 1476–1484 (2011)CrossRefGoogle Scholar
  7. 7.
    Somers, A.E., Howlett, P.C., MacFarlane, D.R., Forsyth, M.: A review of ionic liquid lubricants. Lubricants 1, 3–21 (2013)CrossRefGoogle Scholar
  8. 8.
    Xiao, H.: Ionic liquid lubricants: basics and applications. Tribol. Trans. 60, 20–30 (2017)CrossRefGoogle Scholar
  9. 9.
    Amiril, S.A., Rahim, E.A., Syahrullail, S.: A review on ionic liquids as sustainable lubricants in manufacturing and engineering. Recent research, performance and applications. J. Cleaner Prod. 168, 1571–1589 (2017)CrossRefGoogle Scholar
  10. 10.
    Zhou, Y., Qu, J.: Ionic liquids as lubricant additives: a review. ACS Appl. Mater. Interfaces 9, 3209–3222 (2017)CrossRefGoogle Scholar
  11. 11.
    Sanes, J., Aviles, M.D., Saurin, N., Espinosa, T., Carrion, F.J., Bermudez, M.D.: Synergy between graphene and ionic liquid lubricant additives. Tribol. Int. 116, 371–382 (2017)CrossRefGoogle Scholar
  12. 12.
    Aviles, M.D., Saurin, N., Sanes, J., Carrion, F.J., Bermudez, M.D.: Ionanocarbon lubricants. The combination of ionic liquids and carbon nanophases in tribology. Lubricants 5, 14 (2017)CrossRefGoogle Scholar
  13. 13.
    Saurin, N., Espinosa, T., Sanes, J., Carrion, F.J., Bermudez, M.D.: Ionic nanofluids in tribology. Lubricants 3, 650–663 (2015)CrossRefGoogle Scholar
  14. 14.
    Bermudez, M.D., Jimenez, A.E., Martinez-Nicolas, G.: Study of surface interactions of ionic liquids with aluminium alloys in corrosion and erosion-corrosion processes. Appl. Surf. Sci. 253, 7295–7302 (2007)CrossRefGoogle Scholar
  15. 15.
    Saurin, N., Minami, I., Sanes, J., Bermudez, M.D.: Study of the effect of tribo-materials and surface finish on the lubricant performance of new halogen-free room temperature ionic liquids. Appl. Surf. Sci. 366, 464–474 (2016)CrossRefGoogle Scholar
  16. 16.
    Nyberg, E., Respatiningsih, C.Y., Minami, I.: Molecular design of advanced base fluids: hydrocarbon-mimicking ionic liquids. RSC Adv. 7, 6364–6373 (2017)CrossRefGoogle Scholar
  17. 17.
    Espinosa, T., Sanes, J., Bermudez, M.D.: New alkylether–thiazolium room-temperature ionic liquid lubricants: surface interactions and tribological performance. ACS Appl. Mater. Interfaces 8, 18631–18639 (2016)CrossRefGoogle Scholar
  18. 18.
    Somers, A., Yunis, R., Armand, M., Pringle, J., MacFarlane, D., Forsyth, M.: Towards phosphorus-free ionic liquid antiwear lubricant additives. Lubricants 4, 22 (2016)CrossRefGoogle Scholar
  19. 19.
    Syahir, A.Z., Zulkifli, N.W.M., Masjuki, H.H., Kalam, M.A., Alabdulkarem, A., Gulzar, M., Khuong, L.S., Harith, M.H.: A review on bio-based lubricants and their applications. J. Clean. Prod. 168, 997–1016 (2017)CrossRefGoogle Scholar
  20. 20.
    Song, Z.H., Liang, Y.M., Fan, M.J., Zhou, F., Liu, W.M.: Ionic liquids from amino acids: fully green fluid lubricants for various surface contacts. RSC Adv. 4, 19396–19402 (2014)CrossRefGoogle Scholar
  21. 21.
    Greaves, T.L., Drummond, C.J.: Protic ionic liquids: properties and applications. Chem. Rev. 108, 206–237 (2008)CrossRefGoogle Scholar
  22. 22.
    Ortega, M.R., Parise, K., Ramos, L.B., Boff, U., Mattedi, S., Schaeffer, L., Malfatti, C.F.: Protic ionic liquids used as metal-forming green lubricants for aluminum: effect of anion chain length. Mater. Res. 20, 675–687 (2017)CrossRefGoogle Scholar
  23. 23.
    Shi, Y., Larsson, R.: Non-corrosive and biomaterials protic ionic liquids with high lubricating performance. Tribol. Lett. 63, 1 (2016)CrossRefGoogle Scholar
  24. 24.
    Alvarez, V.H., Dosil, N., Gonzalez-Cabaleiro, R., Mattedi, S., Martin-Pastor, M., Iglesias, M., Navaza, J.M.: Brønsted ionic liquids for sustainable processes: synthesis and physical properties. J. Chem. Eng. Data 55, 625–632 (2010)CrossRefGoogle Scholar
  25. 25.
    Iglesias, M., Gonzalez-Olmos, R., Cota, I., Medina, F.: Brønsted ionic liquids: study of physico-chemical properties and catalytic activity in aldol condensations. Chem. Eng. J. 162, 802–808 (2010)CrossRefGoogle Scholar
  26. 26.
    Espinosa, T., Sanes, J., Jimenez, A.E., Bermudez, M.D.: Surface interactions, corrosion processes and lubricating performance of protic and aprotic ionic liquids with OFHC copper. Appl. Surf. Sci. 273, 578–597 (2013)CrossRefGoogle Scholar
  27. 27.
    Espinosa, T., Sanes, J., Jimenez, A.E., Bermudez, M.D.: Protic ammonium carboxylate ionic liquid lubricants of OFHC copper. Wear 303, 495–509 (2013)CrossRefGoogle Scholar
  28. 28.
    Saurin, N., Sanes, J., Bermudez, M.D.: New graphene/ionic liquid nanolubricants. Mater. Today-Proc. 3, S227–S232 (2016)CrossRefGoogle Scholar
  29. 29.
    Aviles, M.D., Saurin, N., Espinosa, T., Sanes, J., Arias-Pardilla, J., Carrion, F.J., Bermudez, M.D.: Self-lubricating, wear resistant protic ionic liquid-epoxy resin. Express Polym. Lett. 11, 219–229 (2017)CrossRefGoogle Scholar
  30. 30.
    Fajardo, O.Y., Bresme, F., Kornyshev, A.A., Urbakh, M.: Water in ionic liquid lubricants: friend and foe. ACS Nano. 11, 6825–6831 (2017)CrossRefGoogle Scholar
  31. 31.
    Xie, G., Liu, S., Guo, D., Wang, Q., Luo, J.: Investigation of the running-in process and friction coefficient under the lubrication of ionic liquid/water mixture. Appl. Surf. Sci. 255, 6408–6414 (2009)CrossRefGoogle Scholar
  32. 32.
    Espinosa-Marzal, R.M., Arcifa, A., Rossi, A., Spencer, N.D.: Ionic liquids confined in hydrophilic nanocontacts: structure and lubricity in the presence of water. J. Phys. Chem. C 118, 6491–6503 (2014)CrossRefGoogle Scholar
  33. 33.
    Arcifa, A., Rossi, A., Ramakrishna, S.N., Espinosa-Marzal, R., Sheehan, A., Spencer, N.D.: Lubrication of si-based tribopairs with a hydrophobic ionic liquid: the multiscale influence of water. J. Phys. Chem. C 122, 7331–7343 (2018)CrossRefGoogle Scholar
  34. 34.
    Phillips, B.S., Zabinski, J.S.: Ionic liquid lubrication effects on ceramics in a water environment. Tribol. Lett. 17, 533–541 (2004)CrossRefGoogle Scholar
  35. 35.
    Omotowa, B.A., Phillips, B.S., Zabinski, J.S., Shreeve, J.M.: Phosphazene-based ionic liquids: synthesis, temperature-dependent viscosity, and effect as additives in water lubrication of silicon nitride ceramics. Inorg. Chem. 43, 5466–5471 (2004)CrossRefGoogle Scholar
  36. 36.
    Espinosa, T., Jimenez, M., Sanes, J., Jimenez, A.E., Iglesias, M., Bermudez, M.D.: Ultra-low friction with a protic ionic liquid boundary film at the water-lubricated sapphire-stainless steel interface. Tribol. Lett. 53, 1–9 (2014)CrossRefGoogle Scholar
  37. 37.
    Aviles, M.D., Carrion, F.J., Sanes, J., Bermudez, M.D.: Effects of protic ionic liuqid cristal additives on the water-lubricated sliding wear and friction of sapphire against stainless steel. Wear 408–409, 56–64 (2018)CrossRefGoogle Scholar
  38. 38.
    Saurin, N., Aviles, M.D., Espinosa, T., Sanes, J., Carrion, F.J., Bermudez, M.D., Iglesias, P.: Carbon nanophases in ordered nanofluid lubricants. Wear 366–367, 747–755 (2017)CrossRefGoogle Scholar
  39. 39.
    Pamies, P., Aviles, M.D., Arias-Pardilla, J., Espinosa, T., Carrion, F.J., Sanes, J., Bermudez, M.D.: Antiwear performance of ionic liquid + graphene dispersions with anomalous viscosity temperature behaviour. Tribol. Int. 122, 200–209 (2008)CrossRefGoogle Scholar
  40. 40.
    Pamies, R., Espejo, C., Carrion, F.J., Morina, A., Neville, A., Bermudez, M.D.: Rheological behavior of multiwalled carbon nanotube-imidazolium tosylate ionic liquid dispersions. J. Rheol. 61, 279–289 (2017)CrossRefGoogle Scholar
  41. 41.
    Saito, R., Hofmann, M., Dresselhaus, G., Jorio, A., Dresselhaus, M.S.: Raman spectroscopy of graphene and carbon nanotubes. Adv. Phys. 60, 413–550 (2011)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Grupo de Ciencia de Materiales e Ingeniería Metalúrgica, Departamento de Ingeniería de Materiales y FabricaciónUniversidad Politécnica de CartagenaCartagenaSpain

Personalised recommendations