Advertisement

Tribology Letters

, 67:18 | Cite as

Effects of Copper Nanoparticles Located in Different Regions of Polytetrafluoroethylene/Polyimide Blends on the Morphology, Mechanical and Tribological Properties of PTFE Composites

  • Yuanliang Zhao
  • Xiaowen QiEmail author
  • Wenli Zhang
  • Bingli Fan
  • Qingxiang Yang
Original Paper
  • 31 Downloads

Abstract

The effects of copper nanoparticles (Cu) located in different regions of polytetrafluoroethylene/polyimide (PTFE/PI) blends on the morphology, thermal, mechanical, and tribological properties of PTFE composites were studied. Region one is PI phases (the corresponding composites is denoted as PPC), region two is PTFE phases and the interface between PTFE and PI (the corresponding composites is denoted as PPC-m). Results indicate that the incorporation of Cu nanoparticles into PI phases improves the dispersibility and homogeneity of PI phases. As a consequence, the crystallinity of PTFE composites is reduced, but compressive strength and modulus of PTFE composites are enhanced by 50.3% and 14.4% respectively. In addition, self-lubricity and wear resistance of PTFE composites are improved by 10.4% and 50.5%. Scanning electron microscopy (SEM) demonstrates that PI phases with Cu nanoparticles hinder the direct contact between PTFE matrix and counterparts. However, Cu nanoparticles located in PTFE matrix and the interface between PTFE and PI deteriorates the dispersibility and homogeneity of PI phases, which lead to the poor mechanical and tribological performance of PTFE composites.

Keywords

PTFE self-lubricating materials Nanoparticles Dispersion Tribological properties 

References

  1. 1.
    Zhang, G., Schlarb, A.K., Tria, S.: Tensile and tribological behaviors of PEEK/nano-SiO2 composites compounded using a ball milling technique. Compos. Sci. Technol. 68, 3073–3080 (2008)CrossRefGoogle Scholar
  2. 2.
    Min, C., Nie, P., Song, H.J.: Study of tribological properties of polyimide/graphene oxide nanocomposite films under seawater-lubricated condition. Tribol. Int. 80, 131–140 (2014)CrossRefGoogle Scholar
  3. 3.
    Yin, X., Wu, J., Li, C., Lu, X.H.: Right way of using graphene oxide additives for water-lubricated PEEK: adding in polymer or water. Tribol. Lett. 66, 103 (2018)CrossRefGoogle Scholar
  4. 4.
    Unal, H., Mimaroglu, A., Kadıoglu, U.: Sliding friction and wear behaviour of polytetrafluoroethylene and its composites under dry conditions. Mater. Design. 25, 239–245 (2004)CrossRefGoogle Scholar
  5. 5.
    Sawyer, W.G., Freudenberg, K.D., Bhimaraj, P.: A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254, 573–580 (2003)CrossRefGoogle Scholar
  6. 6.
    Blanchet, T.A., Kennedy, F.E.: Sliding wear mechanism of polytetraflu- oroethylene (PTFE) and PTFE composites. Wear 153, 229–243 (1992)CrossRefGoogle Scholar
  7. 7.
    Bahadur, S., Tabor, D.: The wear of filled polytetrafluoroethylene. Wear 98, 1–13 (1984)CrossRefGoogle Scholar
  8. 8.
    Pooley, T.: Friction-relation of sliding properties of PTFE and PE to molecular orientation. Nature 237, (1972)Google Scholar
  9. 9.
    Tanaka, K., Uchiyama, Y., Toyooka, S.: The mechanism of wear of polytetrafluoroethylene. Wear 23, 153–172 (1976)CrossRefGoogle Scholar
  10. 10.
    Steijn, R.P.: The sliding surface of polytetrafluoroethylene: an investigation with the electron microscope. Wear 12, 193–212 (1968)CrossRefGoogle Scholar
  11. 11.
    Burris, D.L., Sawyer, W.G.: A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261, 410–418 (2006)CrossRefGoogle Scholar
  12. 12.
    Zhang, G.L., Ke, Y.C., He, J.: Effects of organo - modified montmorillonite on the tribology performance of bismaleimide-based nanocomposites. Mater. Des. 86, 138–145 (2015)CrossRefGoogle Scholar
  13. 13.
    Lv, Y., Wang, W., Xie, G.: Self-lubricating PTFE-based composites with black phosphorus nanosheets. Tribol. Lett. 66, 61 (2018)CrossRefGoogle Scholar
  14. 14.
    Lai, S.Q., Li, T.S., Wang, F.D.: The effect of silica size on the friction and wear behaviors of polyimide/silica hybrids by sol-gel processing. Wear 262, 1048–1055 (2007)CrossRefGoogle Scholar
  15. 15.
    Jones, M.R., Mcghee, E.O., Marshall, S.L.: The role of microstructure in ultralow wear fluoropolymer composites. Tribol. T.  https://doi.org/10.1080/10402004.2018.1502855
  16. 16.
    Wang, S., Li, Q., Zhang, S.: Tribological behavior of poly (phenyl p-hydroxybenzoate) /polytetrafluoroethylene composites filled with hexagonal boron nitride under dry sliding condition. Mater. Des. 43, 507–512 (2013)CrossRefGoogle Scholar
  17. 17.
    Hong, M.H., Su-II, P.: Effect of fluorinated ethylene propylene copolymer on the wear behaviour of polytetrafluoroethylene. Wear 143, 87–97 (1991)CrossRefGoogle Scholar
  18. 18.
    Chen, B., Wang, J., Yan, F.: Microstructure of PTFE-based polymer blends and their tribological behaviors under aqueous environment. Tribol. Lett. 45, 387–395 (2011)CrossRefGoogle Scholar
  19. 19.
    Jia, Z., Hao, C., Yan, Y.: Effects of nanoscale expanded graphite on the wear and frictional behaviors of polyimide-based composites. Wear 338, 282–287 (2015)CrossRefGoogle Scholar
  20. 20.
    Wang, Q.H., Zhang, X., Pei, X.: Study on the synergistic effect of carbon fiber and graphite and nanoparticle on the friction and wear behavior of polyimide composites. Mater. Design. 31, 3761–3768 (2010)CrossRefGoogle Scholar
  21. 21.
    Jiang, Z., Gyurova, L.A., Schlarb, A.K.: Study on friction and wear behavior of polyphenylene sulfide composites reinforced by short carbon fibers and sub-micro TiO2 particles. Compos. Sci. Technol. 68, 734–742 (2008)CrossRefGoogle Scholar
  22. 22.
    Bijwe, J., Kumar, M.: Optimization of steel wool contents in non-asbestos organic (nao) friction composites for best combination of thermal conductivity and tribo-performance. Wear 263, 1243–1248 (2007)CrossRefGoogle Scholar
  23. 23.
    Bijwe, J., Kumar, M., Gurunath, P.V.: Optimization of brass contents for best combination of tribo-performance and thermal conductivity of non-asbestos organic (NAO) friction composites. Wear 265, 699–712 (2008)CrossRefGoogle Scholar
  24. 24.
    Díez-Pascual, A.M., Díez-Vicente, A.L.: Nano-TiO2 reinforced PEEK/PEI blends as biomaterials for load-bearing implant applications, Acs Appl. Mater. Inter. 7, (2015)Google Scholar
  25. 25.
    Chen, B., Wang, J., Yan, F.: Synergism of carbon fiber and polyimide in polytetrafluoroethylene-based composites: Friction and wear behavior under sea water lubrication. Mater. Design. 36, 366–371 (2012)CrossRefGoogle Scholar
  26. 26.
    Shi, Y., Mu, L., Feng, X.: The tribological behavior of nanometer and micrometer TiO2 particle filled polytetrafluoroethylene/polyimide. Mater. Design. 32, 964–970 (2011)CrossRefGoogle Scholar
  27. 27.
    Aghjeh, M.R., Asadi, V.: Mehdijabbar, P.: Application of linear rheology in determination of nanoclay localization in PLA/EVA/Clay nanocomposites: Correlation with microstructure and thermal properties. Compos. Part B. 86, 273–284 (2016)CrossRefGoogle Scholar
  28. 28.
    Moud, A.A., Javadi, A.: Effect of dispersion and selective localization of carbon nanotubes on rheology and electrical conductivity of polyamide 6 (PA6), Polypropylene (PP), and PA6/PP nanocomposites. J. Polym. Sci. Pol. Phys. 53, 703–717 (2014)Google Scholar
  29. 29.
    Fu, Q., Bai, H.W., Xiu, H.: Selective localization of titanium dioxide nanoparticles at the interface and its effect on the impact toughness of poly(L-lactide)/poly(ether)urethane blends. Express Polym. Lett. 7, 261–271 (2013)CrossRefGoogle Scholar
  30. 30.
    Filippone, G., Dintcheva, N.T.: Mantia FPL. Selective localization of organoclay and effects on the morphology and mechanical properties of LDPE/PA11 blends with distributed and co-continuous morphology. J. Polym. Sci. Pol. Phys. 48, 600–609 (2010)CrossRefGoogle Scholar
  31. 31.
    Zhao, Y.L., Qi, X.W., Dong, Y.: Mechanical, thermal and tribological properties of polyimide/nano-SiO2, composites synthesized using an in-situ polymerization. Tribol. Int. 103, 599–608 (2016)CrossRefGoogle Scholar
  32. 32.
    Wang, Q.H., Zheng, F., Wang, T.M.: Tribological properties of polymers PI, PTFE and PEEK at cryogenic temperature in vacuum. Cryogenics 75, 19–25 (2016)CrossRefGoogle Scholar
  33. 33.
    Díezpascual, A.M., Díezvicente, A.L.: Development of nanocomposites reinforced with carboxylatedpoly(ether ether ketone) grafted to zinc oxide with superior antibacterial properties. Acs Appl. Mater. Interfaces 6, 3729–3741 (2014)CrossRefGoogle Scholar
  34. 34.
    Omidvar, H., Stremsdoerfer, G., Meas, Y.J.: Formation of composite Cu–graphite and Cu-PTFE coatings and their tribological characterization. Mater. Sci. 43, 1716–1722 (2008)CrossRefGoogle Scholar
  35. 35.
    Yuan, Y., Yu, D., Yin, Y.: Effect of sintering temperature on the crystallization behavior and properties of silica filled PTFE composites. J. Mater. Sci. Mater. El. 27, 13288–13293 (2016)CrossRefGoogle Scholar
  36. 36.
    Xu, T., Jia, Z., Luo, Y.: Interfacial interaction between the epoxidized natural rubber and silica in natural rubber/silica composites. Appl. Surf Sci. 328, 306–313 (2015)CrossRefGoogle Scholar
  37. 37.
    Lua, A.C., Shen, Y.: Preparation and characterization of polyimide–silica composite membranes and their derived carbon–silica composite membranes for gas separation. Chem. Eng. J. 220, 441–451 (2013)CrossRefGoogle Scholar
  38. 38.
    Zhang, B., Wu, Y.H., Lu, Y.H., Wang, T.H., Jian, X.G., Qiu, J.S.: Preparation and characterization of carbon and carbon/zeolite membranes from ODPA/ODA type polyetherimide. J. Membrane. Sci. 474, 114–121 (2015)CrossRefGoogle Scholar
  39. 39.
    And, T.S., Ando, S.: Synthesis, Characterization, and optical properties of metal-containing fluorinated polyimide films. Chem. Mater. 10, 3368–3378 (1998)CrossRefGoogle Scholar
  40. 40.
    Boggess, R.K., Taylor, L.T.: Characterization of cobal-modified polyimides. J. Polym. Sci. Part A 25, 685–702 (2010)CrossRefGoogle Scholar
  41. 41.
    Luyt, A.S., Molefi, J.A., Krump, H.: Thermal, mechanical and electrical properties of copper powder filled low-density and linear low-density polyethylene composites. Polym. Degrad. Stabil. 91, 1629–1636 (2006)CrossRefGoogle Scholar
  42. 42.
    Filippone, G., Dintcheva, N.T., Mantia, F.P.L.: Using organoclay to promote morphology refinement and co-continuity in high-density polyethylene/polyamide 6 blends-Effect of filler content and polymer matrix composition. Polymer 51, 3956–3965 (2010)CrossRefGoogle Scholar
  43. 43.
    And, L.T.V., Giannelis, E.P.: Compatibilizing poly(vinylidene fluoride)/nylon-6 blends with nanoclay. Macromolecules 40, 8271–8276 (2007)CrossRefGoogle Scholar
  44. 44.
    Shakouri, A., Ahmari, H., Hojjat, M.: Effect of TiO2 nanoparticle on rheological behavior of poly(vinyl alcohol) solution. J. Vinyl. Addit. Techn. 23, 1–7 (2017)CrossRefGoogle Scholar
  45. 45.
    Mallick, S., Khatua, B.B.: Morphology and properties of nylon6 and high density polyethylene blends in absence and presence of nanoclay. J. Appl. Polym. Sci. 121, 359–368 (2011)CrossRefGoogle Scholar
  46. 46.
    Tong, W., Huang, Y., Liu, C.: The morphology of immiscible PDMS/PIB blends filled with silica nanoparticles under shear flow. Colloid. Polym. Sci. 288, 753–760 (2010)CrossRefGoogle Scholar
  47. 47.
    Min, Z.R., Ming, Q.Z., Yong, X.Z.: Structure–property relationships of irradiation grafted nano-inorganic particle filled polypropylene composites. Polymer 42, 167–183 (2001)CrossRefGoogle Scholar
  48. 48.
    Huang, T., Xin, Y., Li, T.: Modified graphene/polyimide nanocomposites: reinforcing and tribological effects. Acs Appl. Mater. Inter. 5, 4878–4891 (2013)CrossRefGoogle Scholar
  49. 49.
    Davis, C.R., Zimmerman, J.A.: Thermal stability studies of a polyimide - polytetrafluoroethylene blend and its components. J. Appl. Polym. Sci. 54, 153–162 (1994)CrossRefGoogle Scholar
  50. 50.
    Naffakh, M., Díezpascual, A.M., Marco, C.J.: Novel melt-processable poly(ether ether ketone)(PEEK)/inorganic fullerene-like WS(2) nanoparticles for critical applications. Phys. Chem. B 114, 11444–11453 (2010)CrossRefGoogle Scholar
  51. 51.
    Kim, J.Y., Han, S.I., Hong, S.: Effect of modified carbon nanotube on the properties of aromatic polyester nanocomposites. Polymer 49, 3335–3345 (2008)CrossRefGoogle Scholar
  52. 52.
    Burris, D.L., Boesl, B., Bourne, G.R.: Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292, 387–402 (2010)CrossRefGoogle Scholar
  53. 53.
    Quazi, R.T., Bhattacharya, S.N., Kosior, E.J.: The effect of dispersed paint particles on the mechanical properties of rubber toughened polypropylene composites. Mater. Sci. 34, 607–614 (1999)CrossRefGoogle Scholar
  54. 54.
    Kizilkaya, C., Karataş, S., Apohan, N.: Synthesis and characterization of novel polyimide/SiO2 nanocomposite materials containing phenylphosphine oxide via sol-gel technique. J. Appl. Polym. Sci. 115, 3256–3264 (2010)CrossRefGoogle Scholar
  55. 55.
    Rusu, M., Sofian, N., Rusu, D.: Mechanical and thermal properties of zinc powder filled high density polyethylene composites. Polym. Test. 20, 409–417 (2001)CrossRefGoogle Scholar
  56. 56.
    Zhang, Z.Z., Su, F.H., Wang, K.: Study on the friction and wear properties of carbon fabric composites reinforced with micro- and nano-particles. Mat. Sci. Eng. A-Struct. 404, 251–258 (2005)CrossRefGoogle Scholar
  57. 57.
    Larsen, T., Andersen, T.L., Thorning, B.: Changes in the tribological behavior of an epoxy resin by incorporating CuO nanoparticles and PTFE microparticles. Wear 265, 203–213 (2008)CrossRefGoogle Scholar
  58. 58.
    Lai, S.Q., Yue, L., Li, T.S.: The friction and wear properties of polytetrafluoroethylene filled with ultrafine diamond. Wear 260, 462–468 (2006)CrossRefGoogle Scholar
  59. 59.
    Chizhik, S.A., Goldade, A.V., Korotkevich, S.V.: Friction of smooth surfaces with ultrafine particles in the clearance. Wear 238, 25–33 (2000)CrossRefGoogle Scholar
  60. 60.
    Bahadur, S.: The development of transfer layers and their role in polymer tribology. Wear 245, 92–99 (2000)CrossRefGoogle Scholar
  61. 61.
    Li, F., Hu, K.A., Li, J.L.: The friction and wear characteristics of nanometer ZnO filled Polytetrafluoroethylene. Wear 249, 877–882 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2019

Authors and Affiliations

  • Yuanliang Zhao
    • 1
    • 2
    • 3
  • Xiaowen Qi
    • 1
    • 2
    Email author
  • Wenli Zhang
    • 1
    • 2
  • Bingli Fan
    • 1
    • 2
  • Qingxiang Yang
    • 2
    • 4
  1. 1.School of Mechanical EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China
  2. 2.Aviation Key Laboratory of Science and Technology on Generic Technology of Self-Lubricating Spherical Plain BearingYanshan UniversityQinhuangdaoPeople’s Republic of China
  3. 3.School of Mechanical EngineeringShandong University of TechnologyZiboPeople’s Republic of China
  4. 4.School of Material Science and EngineeringYanshan UniversityQinhuangdaoPeople’s Republic of China

Personalised recommendations