Advertisement

Tribology Letters

, 67:8 | Cite as

Effects of Normal Load on the Coefficient of Friction by Microscratch Test of Copper with a Spherical Indenter

  • Chenghui Gao
  • Ming LiuEmail author
Original Paper
  • 209 Downloads

Abstract

A Rockwell C 120° diamond indenter with a spherical tip radius of 100 µm was used to measure the coefficient of friction by microscratch test under different normal loads. The measured friction coefficient was found to increase with normal load, which was rationalised by a geometrical intersection model. Although plastic deformation increases with normal load, its contribution into the total deformation becomes smaller with the increase in normal load. Elastic deformation predominates in the total deformation under large normal loads. It is the adhesion shear stress over the contact area that causes plastic deformation. Lateral force was found to be proportional to penetration depth, especially under large normal loads when elastic deformation predominated the deformation, with the proportionality representing deformation or shearing resistant toughness.

Keywords

Microscratch test Spherical indenter The coefficient of friction Effects of normal load Scratch-induced deformation 

Notes

Acknowledgements

This project is supported by National Natural Science Foundation of China (Grant Nos. 51705082 and 51875106) and Fujian Provincial Collaborative Innovation Center for High-end Equipment Manufacturing (No. 0020-50006103). M. Liu is also grateful for the support from Fujian Provincial Minjiang Scholar Program (N0. 0020-510486).

References

  1. 1.
    Venkataraman, S., Kohlstedt, D.L., Gerberich, W.W.: Microscratch Analysis of the Work of Adhesion for Pt Thin-Films on NiO. J. Mater. Res. 7(5), 1126–1132 (1992).  https://doi.org/10.1557/Jmr.1992.1126 CrossRefGoogle Scholar
  2. 2.
    Beegan, D., Chowdhury, S., Laugier, M.T.: Comparison between nanoindentation and scratch test hardness (scratch hardness) values of copper thin films on oxidised silicon substrates. Surf. Coat. Technol. 201(12), 5804–5808 (2007).  https://doi.org/10.1016/j.surfcoat.2006.10.031 CrossRefGoogle Scholar
  3. 3.
    Wredenberg, F., Larsson, P.L.: Scratch testing of metals and polymers: Experiments and numerics. Wear. 266(1–2), 76–83 (2009).  https://doi.org/10.1016/j.wear.2008.05.014 CrossRefGoogle Scholar
  4. 4.
    Akono, A.T., Randall, N.X., Ulm, F.J.: Experimental determination of the fracture toughness via microscratch tests: Application to polymers, ceramics, and metals. J. Mater. Res. 27(2), 485–493 (2012).  https://doi.org/10.1557/jmr.2011.402 CrossRefGoogle Scholar
  5. 5.
    Bard, R., Ulm, F.J.: Scratch hardness—strength solutions for cohesive-frictional materials. Int. J. Numer. Anal. Methods Geomech. 36(3), 307–326 (2012)CrossRefGoogle Scholar
  6. 6.
    Miyake, S., Yamazaki, S.: Nanoscratch properties of extremely thin diamond-like carbon films. Wear. 305(1–2), 69–77 (2013).  https://doi.org/10.1016/j.wear.2013.05.005 CrossRefGoogle Scholar
  7. 7.
    Wang, Z., Zeng, Q., Zheng, J.: Adsorption and Lubricating Behavior of Salivary Pellicle on Dental Ceramic. Lubrication Engineering: (2017)Google Scholar
  8. 8.
    Burnett, P.J., Rickerby, D.S.: The relationship between hardness and scratch adhession. Thin Solid Films 154(1–2), 403–416 (1987)CrossRefGoogle Scholar
  9. 9.
    Ollendorf, H., Schneider, D.: A comparative study of adhesion-test methods for hard coatings. Surf. Coat. Technol. 113(1–2), 86–102 (1999).  https://doi.org/10.1016/S0257-8972(98)00827-5 CrossRefGoogle Scholar
  10. 10.
    Matthews, A., Franklin, S., Holmberg, K.: Tribological coatings: contact mechanisms and selection. J. Phys. D 40(18), 5463–5475 (2007).  https://doi.org/10.1088/0022-3727/40/18/S07 CrossRefGoogle Scholar
  11. 11.
    Bhushan, B., Gupta, B.K., Azarian, M.H.: Nanoindentation, microscratch, friction and wear studies of coatings for contact recording applications. Wear 181(95), 743–758 (1995)CrossRefGoogle Scholar
  12. 12.
    Zhao, X.Z., Bhushan, B.: Material removal mechanisms of single-crystal silicon on nanoscale and at ultralow loads. Wear. 223(1–2), 66–78 (1998).  https://doi.org/10.1016/S0043-1648(98)00302-0 CrossRefGoogle Scholar
  13. 13.
    Beake, B.D., Goodes, S.R., Shi, B.: Nanomechanical and nanotribological testing of ultra-thin carbon-based and MoST films for increased MEMS durability. J. Phys. D 42(6), 065301 (2009).  https://doi.org/10.1088/0022-3727/42/6/065301 CrossRefGoogle Scholar
  14. 14.
    Wu, T.W.: Microscratch and Load Relaxation Tests for Ultra-Thin Films. J. Mater. Res. 6(2), 407–426 (1991).  https://doi.org/10.1557/Jmr.1991.0407 CrossRefGoogle Scholar
  15. 15.
    Burnett, P.J., Rickerby, D.S.: The scratch adhesion test—an elastic–plastic indentation analysis. Thin Solid Films. 157(2), 233–254 (1988).  https://doi.org/10.1016/0040-6090(88)90006-5 CrossRefGoogle Scholar
  16. 16.
    Sekler, J., Steinmann, P.A., Hintermann, H.E.: The scratch test - different critical load determination techniques. Surf. Coat. Technol. 36(1–2), 519–529 (1988).  https://doi.org/10.1016/0257-8972(88)90179-X CrossRefGoogle Scholar
  17. 17.
    Andriy, K., Yury, G., Vladislav, D., Ali, E.: Phase transformations in silicon under dry and lubricated sliding. Tribol. Trans. 45(3), 372–380 (2002)CrossRefGoogle Scholar
  18. 18.
    Charitidis, C., Logothetidis, S., Gioti, M.: A comparative study of the nanoscratching behavior of amorphous carbon films grown under various deposition conditions. Surf. Coat. Technol. 125(1–3), 201–206 (2000).  https://doi.org/10.1016/S0257-8972(99)00546-0 CrossRefGoogle Scholar
  19. 19.
    Huang, L.Y., Xu, K.W., Lu, J.: Evaluation of scratch resistance of diamond-like carbon films on Ti alloy substrate by nano-scratch technique. Diam. Relat. Mater. 11(8), 1505–1510 (2002).  https://doi.org/10.1016/S0925-9635(02)00054-7 CrossRefGoogle Scholar
  20. 20.
    Meng, B.B., Zhang, Y., Zhang, F.H.: Material removal mechanism of 6H-SiC studied by nano-scratching with Berkovich indenter. Appl. Phys. A. 122(3), 247 (2016).  https://doi.org/10.1007/s00339-016-9802-7 CrossRefGoogle Scholar
  21. 21.
    AlMotasem, A.T., Bergstrom, J., Gaard, A., Krakhmalev, P., Holleboom, L.J.: Atomistic insights on the wear/friction behavior of nanocrystalline ferrite during nanoscratching as revealed by molecular dynamics. Tribol. Lett. 65(3), 101 (2017).  https://doi.org/10.1007/s11249-017-0876-y CrossRefGoogle Scholar
  22. 22.
    Diez-Ibarbia, A., Fernandez-Del-Rincon, A., Garcia, P., De-Juan, A., Iglesias, M., Viadero, F.: Assessment of load dependent friction coefficients and their influence on spur gears efficiency. Meccanica(3), 1–21 (2017)Google Scholar
  23. 23.
    Zhang, H.D., Takeuchi, Y., Chong, W.W.F., Mitsuya, Y., Fukuzawa, K., Itoh, S.: Simultaneous in situ measurements of contact behavior and friction to understand the mechanism of lubrication with nanometer-thick liquid lubricant films. Tribol. Int. 127, 138–146 (2018).  https://doi.org/10.1016/j.triboint.2018.05.043 CrossRefGoogle Scholar
  24. 24.
    Wang, J., Ma, L., Li, W., Zhou, Z.R.: Influence of different lubricating fluids on friction trauma of small intestine during enteroscopy. Tribol. Int. 126, 29–38 (2018).  https://doi.org/10.1016/j.triboint.2018.05.002 CrossRefGoogle Scholar
  25. 25.
    Sterner, O., Aeschlimann, R., Zurcher, S., Scales, C., Riederer, D., Spencer, N.D., Tosatti, S.G.P.: Tribological classification of contact lenses: From coefficient of friction to sliding work. Tribol. Lett. 63(1), 9 (2016).  https://doi.org/10.1007/s11249-016-0696-5 CrossRefGoogle Scholar
  26. 26.
    Zhang, S., Zeng, X., Igartua, A., Rodriguez-Vidal, E., van der Heide, E.: Texture design for reducing tactile friction independent of sliding orientation on stainless steel sheet. Tribol. Lett. 65(3), 89 (2017).  https://doi.org/10.1007/s11249-017-0869-x CrossRefGoogle Scholar
  27. 27.
    Lu, P., Wood, R.J.K., Gee, M.G., Wang, L., Pfleging, W.: A novel surface texture shape for directional friction control. Tribol. Lett. 66(1), 51 (2018).  https://doi.org/10.1007/s11249-018-0995-0 CrossRefGoogle Scholar
  28. 28.
    Szlufarska, I., Chandross, M., Carpick, R.W.: TOPICAL REVIEW: Recent advances in single-asperity nanotribology. J. Phys. D 41(12), 1854–1862 (2008)CrossRefGoogle Scholar
  29. 29.
    Udaykant Jadav, P., Amali, R., Adetoro, O.B.: Analytical friction model for sliding bodies with coupled longitudinal and transverse vibration. Tribol. Int. 126, 240–248 (2018).  https://doi.org/10.1016/j.triboint.2018.04.018 CrossRefGoogle Scholar
  30. 30.
    Li, S., Li, Q., Carpick, R.W., Gumbsch, P., Liu, X.Z., Ding, X., Sun, J., Li, J.: The evolving quality of frictional contact with graphene. Nature. 539(7630), 541–545 (2016).  https://doi.org/10.1038/nature20135 CrossRefGoogle Scholar
  31. 31.
    Saravanan, P., Selyanchyn, R., Watanabe, M., Fujikawa, S., Tanaka, H., Lyth, S.M., Sugimura, J.: Ultra-low friction of polyethylenimine / molybdenum disulfide (PEI/MoS2)15 thin films in dry nitrogen atmosphere and the effect of heat treatment. Tribol. Int. 127, 255–263 (2018).  https://doi.org/10.1016/j.triboint.2018.06.003 CrossRefGoogle Scholar
  32. 32.
    Westlund, V., Heinrichs, J., Jacobson, S.: On the role of material transfer in friction between metals: initial phenomena and effects of roughness and boundary lubrication in sliding between aluminium and tool steels. Tribol. Lett. 66(3), 97 (2018).  https://doi.org/10.1007/s11249-018-1048-4 CrossRefGoogle Scholar
  33. 33.
    Lee, C., Li, Q., Kalb, W., Liu, X.Z., Berger, H., Carpick, R.W., Hone, J.: Frictional characteristics of atomically thin sheets. Science. 328(5974), 76–80 (2010).  https://doi.org/10.1126/science.1184167 CrossRefGoogle Scholar
  34. 34.
    Gabriel, P., Thomas, A.G., Busfield, J.J.C.: Influence of interface geometry on rubber friction. Wear. 268(5–6), 747–750 (2010).  https://doi.org/10.1016/j.wear.2009.11.019 CrossRefGoogle Scholar
  35. 35.
    Ben-David, O., Fineberg, J.: Static Friction Coefficient Is Not a Material Constant. Phys. Rev. Lett. 106(25), 254301 (2011)CrossRefGoogle Scholar
  36. 36.
    Zhou, C.J., Hu, B., Qian, X.L., Han, X.: A novel prediction method for gear friction coefficients based on a computational inverse technique. Tribol. Int. 127, 200–208 (2018).  https://doi.org/10.1016/j.triboint.2018.06.005 CrossRefGoogle Scholar
  37. 37.
    Maegawa, S., Itoigawa, F., Nakamura, T.: Effect of normal load on friction coefficient for sliding contact between rough rubber surface and rigid smooth plane. Tribol. Int. 92, 335–343 (2015).  https://doi.org/10.1016/j.triboint.2015.07.014 CrossRefGoogle Scholar
  38. 38.
    Yamaguchi, T., Sugawara, T., Takahashi, M., Shibata, K., Moriyasu, K., Nishiwaki, T., Hokkirigawa, K.: Effect of porosity and normal load on dry sliding friction of polymer foam blocks. Tribol. Lett. 66(1), 34 (2018).  https://doi.org/10.1007/s11249-018-0988-z CrossRefGoogle Scholar
  39. 39.
    Yamaguchi, T., Sugawara, T., Takahashi, M., Shibata, K., Moriyasu, K., Nishiwaki, T., Hokkirigawa, K.: Dry sliding friction of ethylene vinyl acetate blocks: Effect of the porosity. Tribol. Int. 116, 264–271 (2017).  https://doi.org/10.1016/j.triboint.2017.07.022 CrossRefGoogle Scholar
  40. 40.
    Maegawa, S., Itoigawa, F., Nakamura, T.: A role of friction-induced torque in sliding friction of rubber materials. Tribol. Int. 93, 182–189 (2016).  https://doi.org/10.1016/j.triboint.2015.08.030 CrossRefGoogle Scholar
  41. 41.
    Scheibert, J., Dysthe, D.K.: Role of friction-induced torque in stick-slip motion. EPL. 92(5), 620–622 (2010).  https://doi.org/10.1209/0295-5075/92/54001 CrossRefGoogle Scholar
  42. 42.
    Mcadams, S.D., Tsui, T.Y., Oliver, W.C., Pharr, G.M.: Effects of interlayers on the scratch adhesion performance of ultra-thin films of copper and gold on silicon substrates. MRS Online Proc. Libr. Arch. (1994).  https://doi.org/10.1557/PROC-356-809 CrossRefGoogle Scholar
  43. 43.
    Scharf, T.W., Barnard, J.A.: Nanotribology of ultrathin a: SiC/SiC-N overcoats using a depth sensing nanoindentation multiple sliding technique. Thin Solid Films. 308(1), 340–344 (1997).  https://doi.org/10.1016/S0040-6090(97)00568-3 CrossRefGoogle Scholar
  44. 44.
    Li, K.J., Ni, B.Y.H., Li, J.C.M.: Stick-slip in the scratching of styrene-acrylonitrile copolymer. J. Mater. Res. 11(6), 1574–1580 (1996).  https://doi.org/10.1557/Jmr.1996.0197 CrossRefGoogle Scholar
  45. 45.
    Gao, C.H., Liu, M.: Characterization of spherical indenter with fused silica under small deformation by Hertzian relation and Oliver and Pharr’s method. Vacuum. 153, 82–90 (2018).  https://doi.org/10.1016/j.vacuum.2018.03.061 CrossRefGoogle Scholar
  46. 46.
    Field, J.S., Swain, M.V.: A simple predictive model for spherical indentation. J. Mater. Res. 8(2), 297–306 (1993).  https://doi.org/10.1557/Jmr.1993.0297 CrossRefGoogle Scholar
  47. 47.
    Gao, C.H., Yao, L.G., Liu, M.: Berkovich nanoindentation of borosilicate K9 glass. Opt. Eng. 57(3) (2018).  https://doi.org/10.1117/1.Oe.57.3.034104 Google Scholar
  48. 48.
    Zhao, G.F., Liu, M., An, Z.N., Ren, Y., Liaw, P.K., Yang, F.Q.: Electromechanical responses of Cu strips. J. Appl. Phys. 113(18) (2013).  https://doi.org/10.1063/1.4804938 CrossRefGoogle Scholar
  49. 49.
    Beake, B.D., Liskiewicz, T.W., Smith, J.F.: Deformation of Si(100) in spherical contacts—comparison of nano-fretting and nano-scratch tests with nano-indentation. Surf. Coat. Technol. 206(7), 1921–1926 (2011)CrossRefGoogle Scholar
  50. 50.
    Belak, J.: Nanotribology: modeling atoms when surfaces collide-energy and technology review. Energy Technol. Rev. (1994)Google Scholar
  51. 51.
    Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon, Oxford (1950)Google Scholar
  52. 52.
    Carreon, A.H., Funkenbusch, P.D.: Material specific nanoscratch ploughing friction coefficient. Tribol. Int. 126, 363–375 (2018).  https://doi.org/10.1016/j.triboint.2018.05.027 CrossRefGoogle Scholar
  53. 53.
    Benjamin, P., Weaver, C.: Measurement of Adhesion of thin films. Proc. Royal Soc. Lond. 254(1277), 163–176 (1960)CrossRefGoogle Scholar
  54. 54.
    Laugier, M.T.: An energy approach to the adhesion of coatings using the scratch test. Thin Solid Films. 117(4), 243–249 (1984).  https://doi.org/10.1016/0040-6090(84)90354-7 CrossRefGoogle Scholar
  55. 55.
    Laugier, M.T.: Adhesion of Tic and Tin coatings prepared by chemical vapor-deposition on Wc-Co-based cemented carbides. J. Mater. Sci. 21(7), 2269–2272 (1986).  https://doi.org/10.1007/Bf01114266 CrossRefGoogle Scholar
  56. 56.
    Beegan, D., Chowdhury, S., Laugier, M.T.: A nanoindentation study of copper films on oxidised silicon substrates. Surf. Coat. Technol. 176(1), 124–130 (2003).  https://doi.org/10.1016/S0257-8972(03)00774-6 CrossRefGoogle Scholar
  57. 57.
    Liu, M.: Finite element analysis of large contact deformation of an elastic–plastic sinusoidal asperity and a rigid flat. Int. J. Solids Struct. 51(21–22), 3642–3652 (2014).  https://doi.org/10.1016/j.ijsolstr.2014.06.026 CrossRefGoogle Scholar
  58. 58.
    Liu, M., Proudhon, H.: Finite element analysis of contact deformation regimes of an elastic-power plastic hardening sinusoidal asperity. Mech. Mater. 103, 78–86 (2016).  https://doi.org/10.1016/j.mechmat.2016.08.015 CrossRefGoogle Scholar
  59. 59.
    Zok, F.W., Miserez, A.: Property maps for abrasion resistance of materials. Acta Mater. 55(18), 6365–6371 (2007).  https://doi.org/10.1016/j.actamat.2007.07.042 CrossRefGoogle Scholar
  60. 60.
    Shih, M.H., Yu, C.Y., Kao, P.W., Chang, C.P.: Microstructure and flow stress of copper deformed to large plastic strains. Scripta Mater. 45(7), 793–799 (2001)CrossRefGoogle Scholar
  61. 61.
    Barenblatt, G.I.: The mathematical theory of equilibrium cracks in brittle fracture. Adv. Appl. Mech. 7, 55–129 (1962)CrossRefGoogle Scholar
  62. 62.
    Akono, A.T., Reis, P.M., Ulm, F.J.: Scratching as a fracture process: from butter to steel. Phys. Rev. Lett. 106(20), 204302 (2011).  https://doi.org/10.1103/PhysRevLett.106.204302 CrossRefGoogle Scholar
  63. 63.
    Akono, A.T., Ulm, F.J.: Fracture scaling relations for scratch tests of axisymmetric shape. J. Mech. Phys. Solids. 60(3), 379–390 (2012).  https://doi.org/10.1016/j.jmps.2011.12.009 CrossRefGoogle Scholar
  64. 64.
    Akono, A.T., Ulm, F.J.: Scratch test model for the determination of fracture toughness. Eng. Fract. Mech. 78(2), 334–342 (2011).  https://doi.org/10.1016/j.engfracmech.2010.09.017 CrossRefGoogle Scholar
  65. 65.
    Singh, A., Tang, L., Dao, M., Lu, L., Suresh, S.: Fracture toughness and fatigue crack growth characteristics of nanotwinned copper. Acta Mater. 59(6), 2437–2446 (2011).  https://doi.org/10.1016/j.actamat.2010.12.043 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.School of Mechanical Engineering and AutomationFuzhou UniversityFuzhouPeople’s Republic of China

Personalised recommendations