Advertisement

Tribology Letters

, 66:145 | Cite as

Effect of Rheology and Slip on Lubricant Deformation and Disk-to-Head Transfer During Heat-Assisted Magnetic Recording (HAMR)

  • Siddhesh V. SakhalkarEmail author
  • David B. Bogy
Original Paper
  • 114 Downloads

Abstract

The high-temperature laser heating during heat-assisted magnetic recording (HAMR) causes the media lubricant to deform and transfer to the head via evaporation/condensation. The ability of the lubricant to withstand this writing process and sufficiently recover post-writing is critical for robust read/write performance. Moreover, the media-to-head lubricant transfer causes a continuous deposition of contaminants originating from the media at the head near field transducer, challenging the reliability of HAMR drives. Most previous studies on the effects of laser exposure on lubricant depletion have assumed the lubricant to be a viscous fluid and have modeled its behavior using traditional lubrication theory. However, Perfluoropolyether lubricants are viscoelastic fluids and are expected to exhibit a combination of viscous and elastic behavior at the timescale of HAMR. In this paper, we introduce a modification to the traditional Reynolds lubrication equation using the linear Maxwell constitutive equation and a slip boundary condition. We study the deformation and recovery of the lubricant due to laser heating under the influence of thermocapillary stress and disjoining pressure. Subsequently, we use this modified lubrication equation to develop a model that predicts the media-to-head lubricant transfer during HAMR. This model simultaneously determines the deformation and evaporation of the viscoelastic lubricant film on the disk, the diffusion of the vapor phase lubricant in the air bearing, and the evolution of the condensed lubricant film on the head. We investigate the effect of viscoelasticity, lubricant type (Zdol vs Ztetraol), molecular weight, slip, and disjoining pressure on the lubricant transfer process.

Keywords

Hard disk drives Heat-assisted magnetic recording Lubricant Viscoelasticity Rheology Slip Contamination Smear 

Notes

Acknowledgements

This work was supported by the Computer Mechanics Laboratory at University of California, Berkeley, Mechanical Engineering Department.

References

  1. 1.
    Marchon, B., Guo, X.C., Pathem, B.K., Rose, F., Dai, Q., Feliss, N., Schreck, E., Reiner, J., Mosendz, O., Takano, K., Do, H., Burns, J., Saito, Y.: Head-disk interface materials issues in heat-assisted magnetic recording. IEEE Trans. Magn. (2014).  https://doi.org/10.1109/TMAG.2013.2283068 CrossRefGoogle Scholar
  2. 2.
    Wu, L.: Modelling and simulation of the lubricant depletion process induced by laser heating in heat-assisted magnetic recording system. Nanotechnology (2007).  https://doi.org/10.1088/0957-4484/18/21/215702 CrossRefGoogle Scholar
  3. 3.
    Dahl, J.B., Bogy, D.B.: Lubricant flow and evaporation model for heat-assisted magnetic recording including functional end-group effects and thin film viscosity. Tribol. Lett. (2013).  https://doi.org/10.1007/s11249-013-0190-2 CrossRefGoogle Scholar
  4. 4.
    Marchon, B., Saito, Y.: Lubricant thermodiffusion in heat assisted magnetic recording. IEEE Trans. Magn. (2012).  https://doi.org/10.1109/TMAG.2012.2194138 CrossRefGoogle Scholar
  5. 5.
    Dahl, J.B., Bogy, D.B.: Simulation of lubricant recovery after heat-assisted magnetic recording writing. Tribol. Lett. (2013).  https://doi.org/10.1007/s11249-013-0203-1 CrossRefGoogle Scholar
  6. 6.
    Kono, R.-N., Izumisawa, S., Jhon, M.S., Kim, C.A., Choi, H.J.: Rheology of perfluoropolyether lubricants. IEEE Trans. Magn. (2001).  https://doi.org/10.1109/20.950980 CrossRefGoogle Scholar
  7. 7.
    Choi, H.J., Lim, S., Izumisawa, S., Jhon, M.S.: Viscoelasticity and solution viscosity of perfluoropolyether lubricants. Tribol. Int. (2005).  https://doi.org/10.1016/j.triboint.2005.01.024 CrossRefGoogle Scholar
  8. 8.
    Karis, T.: Lubricants for the disk drive industry. In: Rudnick, L. (ed.) Lubricant Additives: Chemistry and Applications, Chap. 22, pp. 523–584. CRC Press, Boca Raton, FL (2009)CrossRefGoogle Scholar
  9. 9.
    Tanner, R.I.: Engineering Rheology. Clarendon Press, Oxford (2000)Google Scholar
  10. 10.
    Sarabi, S., Bogy, D.B.: Effect of viscoelasticity on lubricant behavior under heat-assisted magnetic recording conditions. Tribol. Lett. (2018).  https://doi.org/10.1007/s11249-017-0979-5 CrossRefGoogle Scholar
  11. 11.
    Mate, C.M., Marchon, B., Murthy, A., Kim, S.-H.: Lubricant-induced spacing increases at slider-disk interfaces in disk drives. Tribol. Lett. (2010).  https://doi.org/10.1007/s11249-009-9555-y CrossRefGoogle Scholar
  12. 12.
    Kiely, J.D., Jones, P.M., Yang, Y., Brand, J.L., Anaya-Dufresne, M., Fletcher, P.C., Zavaliche, F., Toivola, Y., Duda, J.C., Johnson, M.T.: Write-induced head contamination in heat-assisted magnetic recording. IEEE Trans. Magn. (2017).  https://doi.org/10.1109/TMAG.2016.2618842 CrossRefGoogle Scholar
  13. 13.
    Xiong, S., Wang, N., Smith, R., Li, D., Schreck, E., Dai, Q.: Material transfer inside head disk interface for heat assisted magnetic recording. Tribol. Lett. (2017).  https://doi.org/10.1007/s11249-017-0860-6 CrossRefGoogle Scholar
  14. 14.
    Yang, Y., Li, X., Stirniman, M., Yan, X., Huang, F., Zavaliche, F., Wang, H., Huang, J., Tang, H., Jones, P.M., Kiely, J.D., Brand, J.L.: Head-disk lubricant transfer and deposition during heat-assisted magnetic recording write operations. IEEE Trans. Magn. (2015).  https://doi.org/10.1109/TMAG.2015.2434826 CrossRefGoogle Scholar
  15. 15.
    Aoyama, J., Furukawa, M., Nishida, S., Tasaka, K., Matsuda, K., Kuroki, K., Ikeda, M.: A head cleaning procedure for heat-assisted magnetic recording. IEEE Trans. Magn. (2017).  https://doi.org/10.1109/TMAG.2017.2706981 CrossRefGoogle Scholar
  16. 16.
    Kiely, J., Jones, P., Hoehn, J.: Materials challenges for the heat-assisted magnetic recording head-disk interface. MRS Bull. (2018).  https://doi.org/10.1557/mrs.2018.4 CrossRefGoogle Scholar
  17. 17.
    Tani, H., Uesaraie, Y., Lu, R., Koganezawa, S., Tagawa, N.: Smear growth on head slider surface from siloxane outgas on heat assisted magnetic recording. Microsyst. Technol. (2018).  https://doi.org/10.1007/s00542-018-3839-9 CrossRefGoogle Scholar
  18. 18.
    Dai, X., Li, H., Shen, S., Wu, S.: Study of perfluoropolyether lubricant consumption and recovery in heat assisted magnetic recording using molecular dynamics simulation method. IEEE Trans. Magn. (2017).  https://doi.org/10.1109/TMAG.2016.2637872 CrossRefGoogle Scholar
  19. 19.
    Dai, X., Zhang, J., Shen, S., Li, H., Zhai, T., Wu, S., Liu, S., Du, H.: Study of formation and development of lubricant bridge in head—disk interface using molecular dynamic method. IEEE Trans. Magn. (2017).  https://doi.org/10.1109/TMAG.2016.2626459 CrossRefGoogle Scholar
  20. 20.
    Seo, Y., Pan, D., Ovcharenko, A., Yang, M., Talke, F.: Molecular dynamics simulation of lubricant transfer at the head-disk interface. IEEE Trans. Magn. (2014).  https://doi.org/10.1109/TMAG.2014.2322353 CrossRefGoogle Scholar
  21. 21.
    Seo, Y., Ovcharenko, A., Talke, F.: Simulation of hydrocarbon oil contamination at the head-disk interface using molecular dynamics. Tribol. Lett. (2016).  https://doi.org/10.1007/s11249-016-0648-0 CrossRefGoogle Scholar
  22. 22.
    Mate, C.M., Marchon, B.: Shear response of molecularly thin liquid films to an applied air stress. Phys. Rev. Lett. (2000).  https://doi.org/10.1103/PhysRevLett.85.3902 CrossRefGoogle Scholar
  23. 23.
    Scarpulla, M., Mate, C.M., Carter, M.: Air shear driven flow of thin perfluoropolyether polymer films. J. Chem. Phys. (2003).  https://doi.org/10.1063/1.1536953 CrossRefGoogle Scholar
  24. 24.
    Sakhalkar, S.V., Bogy, D.B.: A model for lubricant transfer from media to head during heat-assisted magnetic recording (HAMR) writing. Tribol. Lett. (2017).  https://doi.org/10.1007/s11249-017-0952-3 CrossRefGoogle Scholar
  25. 25.
    Ruths, M., Granick, S.: Tribology of confined Fomblin-Z perfluoropolyalkylethers: molecular weight dependence and comparison between unfunctionalized and telechelic chains. Tribol. Lett. (1999).  https://doi.org/10.1023/A:1019137824102 CrossRefGoogle Scholar
  26. 26.
    Itoh, S., Fukuzawa, K., Hamamoto, Y., Zhang, H., Mitsuya, Y.: Fiber wobbling method for dynamic viscoelastic measurement of liquid lubricant confined in molecularly narrow gaps. Tribol. Lett. (2008).  https://doi.org/10.1007/s11249-008-9325-2 CrossRefGoogle Scholar
  27. 27.
    Itoh, S., Fukuzawa, K., Hamamoto, Y., Zhang, H.: Opposing effects of confinement and confinement-induced shear-thinning on viscoelastic properties of liquid lubricant in nanometer-scale gaps. Tribol. Int. (2011).  https://doi.org/10.1016/j.triboint.2010.07.007 CrossRefGoogle Scholar
  28. 28.
    Karis, T., Marchon, B., Flores, V., Scarpulla, M.: Lubricant spin-off from magnetic recording disks. Tribol. Lett. (2001).  https://doi.org/10.1023/A:1012553415639 CrossRefGoogle Scholar
  29. 29.
    Marchon, B., Guo, X.C., Moser, A., Spool, A., Kroeker, R., Crimi, F.: Lubricant dynamics on a slider: the waterfall effect. J. Appl. Phys. (2009).  https://doi.org/10.1063/1.3104764 CrossRefGoogle Scholar
  30. 30.
    Rajagopal, K.R.: On some unresolved issues in non-linear fluid dynamics. Russ. Math. Surv (2003).  https://doi.org/10.1070/RM2003v058n02ABEH000612 CrossRefGoogle Scholar
  31. 31.
    Rauscher, M., Munch, A., Wagner, B., Blossey, R.: A thin-film equation for viscoelastic liquids of Jeffreys type. Eur. Phys. J. E (2005).  https://doi.org/10.1140/epje/i2005-10016-8 CrossRefGoogle Scholar
  32. 32.
    Blossey, R.: Thin film rupture and polymer flow. Phys. Chem. Chem. Phys. (2008).  https://doi.org/10.1039/b807728m CrossRefGoogle Scholar
  33. 33.
    Wu, L.: Lubricant dynamics under sliding condition in disk drives. J. Appl. Phys. (2006).  https://doi.org/10.1063/1.2220489 CrossRefGoogle Scholar
  34. 34.
    Mate, C.M.: Taking a fresh look at disjoining pressure of lubricants at slider-disk interfaces. IEEE Trans. Magn. (2011).  https://doi.org/10.1109/TMAG.2010.2073691 CrossRefGoogle Scholar
  35. 35.
    LeVeque, R.: Finite Difference Methods for Ordinary and Partial Differential Equations. SIAM, Philadelphia (2007).  https://doi.org/10.1137/1.9780898717839 CrossRefGoogle Scholar
  36. 36.
    Christensen, R.: Theory of Viscoelasticity: An Introduction. Elsevier, New York (2012)Google Scholar
  37. 37.
    Tichy, J.: Non-Newtonian lubrication with the convected Maxwell model. J. Tribol. (1996).  https://doi.org/10.1115/1.2831307 CrossRefGoogle Scholar
  38. 38.
    Schowalter, W.: The behaviour of complex fluids at solid boundaries. J. Non-Newton. Fluid Mech. (1988).  https://doi.org/10.1016/0377-0257(88)85048-1 CrossRefGoogle Scholar
  39. 39.
    Fomblin, Z.: Derivatives: Product Data Sheet. Solvay Solexis Inc., North America (2002)Google Scholar
  40. 40.
    Jones, P.M., Yan, X., Hohlfeld, J., Stirniman, M., Kiely, J.D., Zavaliche, F., Tang, H.H.: Laser-induced thermo-desorption of perfluoropolyether lubricant from the surface of a heat-assisted magnetic recording disk: Lubricant evaporation and diffusion. Tribol. Lett. (2015).  https://doi.org/10.1007/s11249-015-0561-y CrossRefGoogle Scholar
  41. 41.
    Wu, L.: A model for liquid transfer between two approaching gas bearing surfaces through coupled evaporation-condensation and migration dynamics. J. Appl. Phys. (2008).  https://doi.org/10.1063/1.2951616 CrossRefGoogle Scholar
  42. 42.
    Lei, R.Z., Gellman, A.J., Jones, P.: Thermal stability of Fomblin Z and Fomblin Zdol thin films on amorphous hydrogenated carbon. Tribol. Lett. (2001).  https://doi.org/10.1023/A:1016670303657 CrossRefGoogle Scholar
  43. 43.
    Zhou, W., Zeng, Y., Liu, B., Yu, S., Hua, W., Huang, X.: Evaporation of polydisperse perfluoropolyether lubricants in heat-assisted magnetic recording. Appl. Phys. Express (2011).  https://doi.org/10.1143/APEX.4.095201 CrossRefGoogle Scholar
  44. 44.
    Zhang, Y., Polycarpou, A.: A single asperity sliding contact model for molecularly thin lubricant. Microsyst. Technol. (2017).  https://doi.org/10.1007/s00542-016-2910-7 CrossRefGoogle Scholar
  45. 45.
    Kim, S.H., Dai, Q., Marchon, B., Flechsig, K.: Humidity effects on lubricant transfer in the head-disk interface of a hard disk drive. J. Appl. Phys. (2009).  https://doi.org/10.1063/1.3061704 CrossRefGoogle Scholar
  46. 46.
    Ambekar, R.P., Bogy, D.B., Dai, Q., Marchon, B.: Critical clearance and lubricant instability at the head-disk interface of a disk drive. Appl. Phys. Lett. (2008).  https://doi.org/10.1063/1.2837187 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Computer Mechanics Laboratory, Department of Mechanical EngineeringUniversity of California, BerkeleyBerkeleyUSA

Personalised recommendations