Advertisement

Tribology Letters

, 66:149 | Cite as

Characterizing Dynamic, High-Frequency Friction in Lubricating Complex-Fluid Thin Films Between Viscoelastic Surfaces

  • Thomas Cristiani
  • Nicholas Cadirov
  • Matthew Ehrman
  • Kai Kristiansen
  • Jeffrey Scott
  • Sumanth Jamadagni
  • Jacob Israelachvili
Original Paper
  • 124 Downloads

Abstract

To investigate the friction dynamics (time evolution of the friction response, including stiction and stick–slip sliding) between viscoelastic surfaces lubricated with complex-fluid films, a ‘wavelet decomposition’ time-series analysis method was applied to measured friction traces. Data were acquired using an updated ‘Rotating Disk’ attachment for the surface forces apparatus (RD-SFA). We have studied the friction frequency response of PDMS surfaces (sphere-on-flat geometry, 2 cm radius) interacting across various ‘everyday’ fluids (oils, creams, moisturizers, etc.) from 0 to 2500 Hz under high sliding velocities/shear rates. The RD attachment is capable of shearing two surfaces at velocities from mm/s to m/s in controlled temperature, humidity, and vapor composition environments. The friction experiments were performed at varying loads (20–320 mN) and velocities (1–40 mm/s) with a 20-µs sampling time. At such (and especially higher) velocities, ‘wavelet decomposition’ can be used to explore the time evolution of friction dynamics and is the most appropriate method for such tasks given its unique ability to resolve broad-spectrum transient frequency components with good time and frequency localization. This technique is general and enables the unambiguous characterization of any system fluctuations or resonant vibrations associated with stick–slip sliding and other ‘intermittent friction.’ These results illustrate the complex and varied friction dynamics that can arise under different experimental or environmental conditions and have implications for damage, wear, and sensory perception.

Keywords

Wavelet analysis Stick–slip friction Thin-film lubrication Complex fluids Surface forces apparatus 

Notes

Acknowledgements

This work was supported by a grant from the Procter & Gamble Company.

Supplementary material

11249_2018_1093_MOESM1_ESM.docx (310 kb)
Supplementary material 1 (DOCX 309 KB)

References

  1. 1.
    Luengo, G., Tsuchiya, M., Heuberger, M., Israelachvili, J.: Thin film rheology and tribology of chocolate. J. Food Sci. 62, 767–812 (1997)CrossRefGoogle Scholar
  2. 2.
    Kragelʹskiĭ, I.V., Dobychin, M.N., Kombalov, V.S.: Friction and Wear: Calculation Methods. Pergamon Press, Oxford (1982)Google Scholar
  3. 3.
    Sivamani, R.K., Goodman, J., Gitis, N.V., Maibach, H.I.: Friction coefficient of skin in real-time. Ski. Res. Technol. 9, 235–239 (2003)CrossRefGoogle Scholar
  4. 4.
    Nacht, S., Close, J.-A., Yeung, D., Gans, E.: Skin friction coefficient: changes induced by skin hydration and emollient application and correlation with perceived skin feel. J. Soc. Cosmet. Chem. 32, 55–65 (1981)Google Scholar
  5. 5.
    Braun, O., Peyrard, M.: Dependence of kinetic friction on velocity: Master equation approach. Phys. Rev. E. 83, (2011)Google Scholar
  6. 6.
    Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106, 254301 (2011)CrossRefGoogle Scholar
  7. 7.
    Blau, P.: The significance and use of the friction coefficient. Tribol. Int. 34, 585–591 (2001)CrossRefGoogle Scholar
  8. 8.
    Masjuki, H., Maleque, M.: Investigation of the anti-wear characteristics of palm oil methyl ester using a four-ball tribometer test. Wear. 206, 179–186 (1997)CrossRefGoogle Scholar
  9. 9.
    Gallardo-Hernandez, E., Lewis, R.: Twin disc assessment of wheel/rail adhesion. Wear 265, 1309–1316 (2008)CrossRefGoogle Scholar
  10. 10.
    Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)CrossRefGoogle Scholar
  11. 11.
    Godfrey, D.: Friction oscillations with a pin-on-disc tribometer. Tribol. Int. 28, 119–126 (1995)CrossRefGoogle Scholar
  12. 12.
    Ogletree, D.F., Carpick, R.W., Salmeron, M.: Calibration of frictional forces in atomic force microscopy. Rev. Sci. Instrum. 67, 3298 (1996)CrossRefGoogle Scholar
  13. 13.
    Stribeck, R.: Characteristics of plain and roller bearings. Zeit. Ver. deut. Ing. 46, 1341–1348 (1902)Google Scholar
  14. 14.
    Jacobson, B.: The Stribeck memorial lecture. Tribol. Int. 36, 781–789 (2003)CrossRefGoogle Scholar
  15. 15.
    Feeny, B., Guran, A., Hinrichs, N., Popp, K.: A historical review on dry friction and stick-slip phenomena. Appl. Mech. Rev. 51, 321 (1998)CrossRefGoogle Scholar
  16. 16.
    Howe, R.D., Cutkosky, M.R.: Sensing skin acceleration for slip and texture perception. In: Proceedings, 1989 International Conference on Robotics and Automation. pp. 145–150. IEEE Computer Society PressGoogle Scholar
  17. 17.
    Sanahuja, S., Upadhyay, R., Briesen, H., Chen, J.: Spectral analysis of the stick-slip phenomenon in “oral” tribological texture evaluation. J. Texture Stud 48, 318–334 (2017)CrossRefGoogle Scholar
  18. 18.
    Giasson, S., Israelachvili, J., Yoshizawa, H.: Thin film morphology and tribology study of Mayonnaise. J. Food Sci. 62, 640–652 (1997)CrossRefGoogle Scholar
  19. 19.
    Ibrahim, R.A.: Friction-induced vibration, chatter, squeal, and chaos—part II: dynamics and modeling. Appl. Mech. Rev. 47, 227 (1994)CrossRefGoogle Scholar
  20. 20.
    Tas, N., Sonnenberg, T., Jansen, H., Legtenberg, R., Elwenspoek, M.: Stiction in surface micromachining. J. Micromech. Microeng. 6, 385–397 (1996)CrossRefGoogle Scholar
  21. 21.
    Lee, D.W., Banquy, X., Israelachvili, J.N.: Stick-slip friction and wear of articular joints. Proc. Natl. Acad. Sci. USA. 110, E567–74: (2013)Google Scholar
  22. 22.
    Daubechies, I.: The wavelet transform, time-frequency localization and signal analysis. IEEE Trans. Inf. Theory. 36, 961–1005 (1990)CrossRefGoogle Scholar
  23. 23.
    Grossmann, A., Kronland-Martinet, R., Morlet, J.: Reading and understanding continuous wavelet transforms. Wavelets.  https://doi.org/10.1007/978-3-642-75988-8_1 (1990)CrossRefGoogle Scholar
  24. 24.
    Liang, J.W., Feeny, B.F.: Wavelet analysis of stick-slip in an oscillator with dry friction. In: ASME Design Engineering Technical Conferences: (1995)Google Scholar
  25. 25.
    Sadegh, H., Mehdi, A.N., Mehdi, A.: Classification of acoustic emission signals generated from journal bearing at different lubrication conditions based on wavelet analysis in combination with artificial neural network and genetic algorithm. Tribol. Int. 95, 426–434 (2016)CrossRefGoogle Scholar
  26. 26.
    Lowrey, D.D., Tasaka, K., Kindt, J.H., Banquy, X., Belman, N., Min, Y., Pesika, N.S., Mordukhovich, G., Israelachvili, J.N.: High-speed friction measurements using a modified surface forces apparatus. Tribol. Lett. 42, 117–127 (2011)CrossRefGoogle Scholar
  27. 27.
    Olhede, S.C., Walden, A.T.: Generalized morse wavelets. IEEE Trans. Signal Process. 50, 2661–2670 (2002)CrossRefGoogle Scholar
  28. 28.
    Daubechies, I., Paul, T.: Time-frequency localisation operators-a geometric phase space approach: II. The use of dilations. Inverse Probl 4, 661–680 (1988)CrossRefGoogle Scholar
  29. 29.
    Mallat, S.: A Wavelet Tour of Signal Processing. Academic Press, London (1999)Google Scholar
  30. 30.
    Reiner, M.: The Deborah number. Phys. Today 17, 62–62 (1964)CrossRefGoogle Scholar
  31. 31.
    Israelachvili, J.N.: Intermolecular and Surface Forces, 3. Academic Press, Burlington, MA (2011)Google Scholar
  32. 32.
    Bowden, F.P., Tabor, D.: The friction and lubrication of solids. Clarendon Press: (2001)Google Scholar
  33. 33.
    Berman, A.D., Ducker, W.A., Israelachvili, J.N.: Origin and characterization of different stick–slip. Friction Mech. Langmuir. 12, 4559–4563 (1996)Google Scholar
  34. 34.
    Yoshizawa, H., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 2. Stick-slip friction of spherical and chain molecules. J. Phys. Chem. 97, 11300–11313 (1993)CrossRefGoogle Scholar
  35. 35.
    Brockley, C.A., Ko, P.L.: Quasi-harmonic friction-induced vibration. J. Lubr. Technol. 92, 550 (1970)CrossRefGoogle Scholar
  36. 36.
    Luengo, G., Israelachvili, J., Granick, S.: Generalized effects in confined fluids: new friction map for boundary lubrication. Wear. 200, 328–335 (1996)CrossRefGoogle Scholar
  37. 37.
    Börzsönyi, T., Szabó, B., Törös, G., Wegner, S., Török, J., Somfai, E., Bien, T., Stannarius, R.: Orientational order and alignment of elongated particles induced by shear. Phys. Rev. Lett. 108, 228302 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Materials DepartmentUniversity of CaliforniaSanta BarbaraUSA
  2. 2.Materials Research LaboratoryUniversity of CaliforniaSanta BarbaraUSA
  3. 3.Department of Chemical EngineeringUniversity of CaliforniaSanta BarbaraUSA
  4. 4.Winton Hill Business CenterThe Proctor & Gamble CoCincinnatiUSA
  5. 5.SurForce LLCGoletaUSA

Personalised recommendations