# On the Use of Silicon Rubber Replica for Surface Topography Studies

Original Paper

First Online:

- 54 Downloads

## Abstract

Silicone rubber is often used to obtain replica of surfaces which are hard to study directly. Here we discuss under what conditions engineering stylus measurements can be used to obtain the correct surface roughness from the replica. We also show how thin vertical slices of the silicone rubber can be used to obtain the surface roughness power spectra for the long-wavelength roughness on even very rough surfaces, such as road surfaces, which may be hard to probe directly with standard optical or stylus instruments.

## Keywords

Rubber replica Silicone rubber Surface roughness power spectrum Stick-slip## Notes

### Acknowledgements

We thank J.R. Barber, R. Bennewitz, S.N. Gorb, L. Pastewka, M. Scaraggi, N. Spencer, and R.A. Sauer for useful comments on the manuscript.

## References

- 1.Persson, B.N.J.: Sliding Friction: Physical Principles and Applications. Springer, Heidelberg (2000)CrossRefGoogle Scholar
- 2.Gnecco, E., Meyer, E.: Elements of Friction Theory and Nanotribology. Cambridge University Press, Cambridge (2015)CrossRefGoogle Scholar
- 3.Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, London (2011)Google Scholar
- 4.Barber, J.R.: Contact Mechanics. Solid Mechanics and Its Applications. Springer, New York (2018)CrossRefGoogle Scholar
- 5.Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep.
**61**, 201–227 (2006)CrossRefGoogle Scholar - 6.Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys.
**115**, 3840–3861 (2001)CrossRefGoogle Scholar - 7.Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., Persson, N.J., Harris, K., Bennett, A., Schulze, K., Rohde, S., Ifju, P., Sawyer, W.G., Angelini, T., Ashtari, E., Hossein, K., Mahmoud, A., Saleh, W., Jiunn-Jong, V., Georg, V., Andrs, S., Soheil, V., Antonis, I., Jackson, R.L., Xu, Y., Streator, J., Rostami, A., Dini, D., Medina, S., Carbone, G., Bottiglione, F., Afferrante, L., Monti, J., Pastewka, L., Robbins, M.O., Greenwood, J.A.: Meeting the contact-mechanics challenge. Tribol. Lett.
**65**, 118 (2017)CrossRefGoogle Scholar - 8.Vakis, A.I., Yastrebov, V.A., Scheibert, J., Minfray, C., Nicola, L., Dini, D., Almqvist, A., Paggi, M., Lee, S., Limbert, G., Molinari, J.F., Anciaux, G., Aghababaei, R., Echeverri Restrepo, S., Papangelo, A., Cammarata, A., Nicolini, P., Putignano, C., Carbone, G., Ciavarella, M., Stupkiewicz, S., Lengiewicz, J., Costagliola, G., Bosia, F., Guarino, R., Pugno, N.M., Müser, M.H.: Modeling and simulation in tribology across scales: an overview, Tribology International (TRIBINT-D-17-01694 - Accepted Manuscript)Google Scholar
- 9.Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys.
**17**, R1 (2005)Google Scholar - 10.Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett.
**54**, 99–106 (2014)CrossRefGoogle Scholar - 11.Jacobs, T.D.B., Junge, T., Pastewka, L.: Quantitative characterization of surface topography using spectral analysis. Surf. Topogr.
**5**, 013001 (2017)CrossRefGoogle Scholar - 12.Lorenz, B., Persson, B.N.J., Dieluweit, S., Tada, T.: Rubber friction: comparison of theory with experiment. Eur. Phys. J. E
**34**, 129 (2011)CrossRefGoogle Scholar - 13.Church, E.L., Takacs, P.Z.: Effects of the nonvanishing tip size in mechanical profile measurements, Proceeding of the SPIE 1332, Optical Testing and Metrology III: Recent Advances in Optical Inspection, https://doi.org/10.1117/12.51099 (1991)
- 14.Knoll, A.W.: Nanoscale contact-radius determination by spectral analysis of polymer roughness images. Langmuir
**29**, 13958–13966 (2013)CrossRefGoogle Scholar - 15.Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol.
**93**, 398–407 (1971)CrossRefGoogle Scholar - 16.Carbone, G., Lorenz, B., Persson, B.N.J., Wohlers, A.: Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E
**29**, 275–284 (2009)CrossRefGoogle Scholar - 17.Almqvist, A., Campan, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids
**59**, 2355–2369 (2011)CrossRefGoogle Scholar - 18.Persson, B.N.J., Albohr, O., Mancosu, F., Peveri, V., Samoilov, V.N., Sivebk, I.M.: On the nature of the static friction, kinetic friction and creep. Wear
**254**, 835–851 (2003)CrossRefGoogle Scholar - 19.Scherge, M., Gorb, S.: Biological Micro- and Nanotribology. Springer, Berlin (2001)CrossRefGoogle Scholar
- 20.Gorb, S.N.: Visualisation of native surfaces by two-step molding. Microsc. Today
**15**, 44–66 (2007)CrossRefGoogle Scholar - 21.Huber, G., Gorb, S.N., Hosoda, N., Spolenak, R., Arzt, E.: Influence of surface roughness on gecko adhesion. Acta Biomater.
**3**, 607–610 (2007)CrossRefGoogle Scholar - 22.Koch, K., Dommisse, A., Barthlott, W., Gorb, S.N.: The use of plant waxes as templates for micro- and nanopatterning of surfaces. Acta Biomater.
**3**, 905–909 (2007)CrossRefGoogle Scholar - 23.Kunzler, T.P., Drobek, T., Schuler, M., Spencer, N.D.: Systematic study of osteoblast and fibroblast response to roughness by means of surface-morphology gradients. Biomaterials
**28**, 2175–2182 (2007)CrossRefGoogle Scholar - 24.Mergel, J.C., Sahli, R., Scheibert, J., Sauer, R.A.: Continuum contact models for coupled adhesion and friction, arXiv:1803.00046v1 [cs.CE] (2018)
- 25.Khafidh, M., Setiyana, B., Jamari, J., Masen, M.A., Schipper, D.J.: Understanding the occurrence of a wavy wear track on elastomeric materials, Wear 412–413, 23 (2018), and references thereinCrossRefGoogle Scholar
- 26.Sahli, R., Pallares, G., Ducottet, C., Ben Ali, I.E., Al Akhrass, S., Guibert, M., Scheibert, J.: Evolution of real contact area under shear. Proc. Natl. Acad. Sci.
**115**, 471–476 (2018)CrossRefGoogle Scholar - 27.Audry, M.C., Fretigny, C., Chateauminois, A., Teissere, J., Barthel, E.: Slip dynamics at a patterned rubber/glass interface during stick-slip motions. Eur. Phys. J. E
**35**, 83 (2012)CrossRefGoogle Scholar - 28.Vorvolakos, K., Chaudhury, M.K.: The effects of molecular weight and temperature on the kinetic friction of silicone rubbers. Langmuir
**19**, 6778–6787 (2003)CrossRefGoogle Scholar - 29.Menga, N., Carbone, G., Dini, D.: Do uniform tangential interfacial stresses enhance adhesion? J. Mech. Phys.Solids
**112**, 145–156 (2018)CrossRefGoogle Scholar - 30.Ciavarella, M.: Fracture mechanics simple calculations to explain small reduction of the real contact area under shear. Facta Univ.
**16**, 87–91 (2018)Google Scholar - 31.Menard, E., Rogers, J.A.: In: Bhushan, B. (ed.): Stamping Techniques for Micro- and Nanofabrication. Springer Handbook of Nanotechnology, Springer, Berlin (2010)Google Scholar
- 32.Gordan, O.D., Persson, B.N.J., Cesa, C.M., Mayer, D., Hoffmann, B., Dieluweit, S., Merkel, R.: On pattern transfer in replica molding. Langmuir
**24**, 6636–6639 (2008)CrossRefGoogle Scholar - 33.Persson, B.N.J.: On the mechanism of adhesion in biological systems. J. Chem. Phys.
**118**, 7614–7621 (2003)CrossRefGoogle Scholar - 34.Geim, A.K., Dubonos, S.V., Grigorieva, I.V., Novoselov, K.S., Zhukov, A.A., Shapoval, SYu.: Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater.
**2**, 461 (2003)CrossRefGoogle Scholar - 35.de Gennes, P.-G., Brochard-Wyart, F., Quere, D.: Capillarity and Wetting Phenomena: Drops, Bubbles, Pearls, Waves. Springer, New York (2004)CrossRefGoogle Scholar
- 36.Campana, C., Persson, B.N.J., Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. J. Phys.
**23**, 085001 (2011)Google Scholar

## Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018