Tribology Letters

, 66:139 | Cite as

Role of Carbon Nanotube Tribolayer Formation on Low Friction and Adhesion of Aluminum Alloys Sliding against CrN

  • Zaixiu Yang
  • Sukanta Bhowmick
  • Anindya Banerji
  • Ahmet T. AlpasEmail author
Original Paper


This work investigates the role of carbon nanotube (CNT) tribolayer formation in reducing friction and adhesion of an Al-alloy engine block material (Al-6.5% Si, 319 Al) sliding against a common piston ring coating, namely, CrN coated steel, when tested under a boundary lubricated condition. Coefficient of friction (COF) values were determined using pin-on-disk type tests as a function of sliding distance using CNT added to ethanol and ethanol without CNT addition. Boundary lubricated tests that used ethanol with 0.14 wt.% CNT resulted in a steady-state COF of 0.16, and reduced Al adhesion to the CrN due to the formation of CNT tribolayers on the Al-alloy contact surfaces. Raman spectroscopy and high resolution SEM suggested the CNT fibers in the tribolayers were damaged and possibly subjected to plastic deformation, and the carbon bonds were possibly passivated by the -H and -OH dissociated from ethanol as suggested by FTIR. The low friction and adhesion observed when ethanol with 0.14 wt.% CNT was used was attributed to the sliding-induced bending and curling of the CNT tribolayers, leading to the formation of rolled sections of tribolayer with a cylindrical morphology (diameter of ~ 1 µm) that reduced direct contact between Al-alloy and CrN surfaces.


Carbon nanotubes Tribolayer Adhesion Friction Aluminum CrN 



The authors would like to thank Natural Sciences and Engineering Research Council of Canada (NSERC) for financial support. Zaixiu Yang would like to thank the China Scholarship Council (CSC) for the financial support in studying at the Tribology of the Materials Research Centre (TMRC), University of Windsor.


  1. 1.
    Berman, D., Erdemir, A., Sumant, A.V.: Few layer graphene to reduce wear and friction on sliding steel surfaces. Carbon 54, 454–459 (2013)CrossRefGoogle Scholar
  2. 2.
    Bhowmick, S., Banerji, A., Alpas, A.T.: Role of humidity in reducing sliding friction of multilayered graphene. Carbon 87, 374–384 (2015)CrossRefGoogle Scholar
  3. 3.
    Bhowmick, S., Lukitsch, M.J., Alpas, A.T.: Tapping of Al-Si alloys with diamond-like carbon coated tools and minimum quantity lubrication. J. Mater. Process. Tech. 210(15), 2142–2153 (2010)CrossRefGoogle Scholar
  4. 4.
    Andersson, B.: Paper xviii (iii) Company perspectives in vehicle tribology-Volvo. In: Dowson, D., (eds.) Tribology Series, pp. 503–506. Elsevier, Amsterdam (1991)Google Scholar
  5. 5.
    Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17(1), 31–42 (2014)CrossRefGoogle Scholar
  6. 6.
    De Volder, M.F.L., Tawfick, S.H., Baughman, R.H., Hart, A.J.: Carbon nanotubes: present and future commercial applications. Science 339(6119), 535–539 (2013)CrossRefGoogle Scholar
  7. 7.
    Yang, Z.X., Bhowmick, S., Sen, F.G., Banerji, A., Alpas, A.T.: Roles of sliding-induced defects and dissociated water molecules on low friction of graphene. Sci. Rep. 8, 121 (2018)CrossRefGoogle Scholar
  8. 8.
    Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D., Zhang, X.B.: Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41(2), 215–222 (2003)CrossRefGoogle Scholar
  9. 9.
    Tu, J.P., Yang, Y.Z., Wang, L.Y., Ma, X.C., Zhang, X.B.: Tribological properties of carbon-nanotube-reinforced copper composites. Tribol. Lett. 10(4), 225–228 (2001)CrossRefGoogle Scholar
  10. 10.
    Liu, D.G., Sun, J., Gui, Z.X., Song, K.J., Luo, L.M., Wu, Y.C.: Super-low friction nickel based carbon nanotube composite coating electro-deposited from eutectic solvents. Diam. Relat. Mater. 74, 229–232 (2017)CrossRefGoogle Scholar
  11. 11.
    Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, A.A., Ajayan, P.M., Schadler, L.S., Sawyer, W.G.: Tunable friction behavior of oriented carbon nanotube films. Tribol. Lett. 24(1), 85–90 (2006)CrossRefGoogle Scholar
  12. 12.
    Mylvaganam, K., Zhang, L.C., Xiao, K.Q.: Origin of friction in films of horizontally oriented carbon nanotubes sliding against diamond. Carbon 47(7), 1693–1700 (2009)CrossRefGoogle Scholar
  13. 13.
    Rui, L.: Tribological behaviour of multi-walled carbon nanotube films. AIP Adv. 4(3), 031309 (2014)CrossRefGoogle Scholar
  14. 14.
    Zhang, B., Xue, Y., Qiang, L., Gao, K.X., Liu, Q., Yang, B.P., Liang, A.M., Zhang, J.Y.: Assembling of carbon nanotubes film responding to significant reduction wear and friction on steel surface. Appl. Nanosci. 7(8), 835–842 (2017)CrossRefGoogle Scholar
  15. 15.
    Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S., Superfine, R.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature 397(6716), 236–238 (1999)CrossRefGoogle Scholar
  16. 16.
    Miyoshi, K., Jr, K.W.S., Wal, R.L.V., Andrews, R., Sayir, A.: Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 19(3), 191–201 (2005)CrossRefGoogle Scholar
  17. 17.
    Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25(3), 247–253 (2006)CrossRefGoogle Scholar
  18. 18.
    Joly-Pottuz, L., Dassenoy, F., Vacher, B., Martin, J.M., Mieno, T.: Ultralow friction and wear behaviour of Ni/Y-based single wall carbon nanotubes (SWNTs). Tribol. Int. 37(11–12), 1013–1018 (2004)CrossRefGoogle Scholar
  19. 19.
    Joly-Pottuz, L., Martin, J.M., Belin, M., Dassenoy, F., Montagnac, G., Reynard, B.: Study of inorganic fullerenes and carbon nanotubes by in situ Raman tribometry. Appl. Phys. Lett. 91(15), 153107 (2007)CrossRefGoogle Scholar
  20. 20.
    Bhowmick, S., Banerji, A., Alpas, A.T.: Tribological behavior of Al-6.5%, -12%, -18.5% Si alloys during machining using CVD diamond and DLC coated tools. Surf. Coat. Technol. 284, 353–364 (2015)CrossRefGoogle Scholar
  21. 21.
    Ejiofor, J.U., Reddy, R.G.: Developments in the processing and properties of particulate Al-Si composites. Jom-J Min. Met. Mat. S 49(11), 31–37 (1997)CrossRefGoogle Scholar
  22. 22.
    Javidani, M., Larouche, D.: Application of cast Al-Si alloys in internal combustion engine components. Int. Mater. Rev. 59(3), 132–158 (2014)CrossRefGoogle Scholar
  23. 23.
    Kocker, G.M.Z., Gross, T., Santner, E.: Influence of the testing parameters on the tribological behavior of self-mated PVD-coatings. Wear 179(1–2), 5–10 (1994)CrossRefGoogle Scholar
  24. 24.
    Konca, E., Cheng, Y.T., Weiner, A.M., Dasch, J.M., Erdemir, A., Alpas, A.T.: Transfer of 319 Al alloy to titanium diboride and titanium nitride based (TiAlN, TiCN, TiN) coatings: effects of sliding speed, temperature and environment. Surf. Coat. Technol. 200(7), 2260–2270 (2005)CrossRefGoogle Scholar
  25. 25.
    Pellizzari, M.: High temperature wear and friction behaviour of nitrided, PVD-duplex and CVD coated tool steel against 6082 Al alloy. Wear 271(9–10), 2089–2099 (2011)CrossRefGoogle Scholar
  26. 26.
    Bhowmick, S., Alpas, A.T.: Minimum quantity lubrication drilling of aluminium-silicon alloys in water using diamond-like carbon coated drills. Int. J. Mach. Tool. Manuf. 48(12–13), 1429–1443 (2008)CrossRefGoogle Scholar
  27. 27.
    Bhowmick, S., Banerji, A., Alpas, A.T.: Friction reduction mechanisms in multilayer graphene sliding against hydrogenated diamond-like carbon. Carbon 109, 795–804 (2016)CrossRefGoogle Scholar
  28. 28.
    Qiu, Y.X., Zhang, S., Li, B., Wang, Y.X., Lee, J.W., Li, F.J., Zhao, D.L.: Improvement of tribological performance of CrN coating via multilayering with VN. Surf. Coat. Technol. 231, 357–363 (2013)CrossRefGoogle Scholar
  29. 29.
    Moothi, K., Iyuke, S.E., Meyyappan, M., Falcon, R.: Coal as a carbon source for carbon nanotube synthesis. Carbon 50(8), 2679–2690 (2012)CrossRefGoogle Scholar
  30. 30.
    Bhowmick, S., Banerji, A., Alpas, A.T.: Tribological behavior and machining performance of non-hydrogenated diamond-like carbon coating tested against Ti-6Al-4V: effect of surface passivation by ethanol. Surf. Coat. Technol. 260, 290–302 (2014)CrossRefGoogle Scholar
  31. 31.
    Bhowmick, S., Sun, G., Alpas, A.T.: Low friction behaviour of boron carbide coatings (B4C) sliding against Ti-6Al-4V. Surf. Coat. Technol. 308, 316–327 (2016)CrossRefGoogle Scholar
  32. 32.
    Bhowmick, S., Lukitsch, M.J., Alpas, A.T.: Dry and minimum quantity lubrication drilling of cast magnesium alloy (AM60). Int. J. Mach. Tool. Manuf. 50(5), 444–457 (2010)CrossRefGoogle Scholar
  33. 33.
    Jiao, L., Zhang, L., Wang, X., Diankov, G., Dai, H.: Narrow graphene nanoribbons from carbon nanotubes. Nature 458(7240), 877 (2009)CrossRefGoogle Scholar
  34. 34.
    Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43(8), 1660–1666 (2005)CrossRefGoogle Scholar
  35. 35.
    Bhowmick, S., Sen, F.G., Banerji, A., Alpas, A.T.: Friction and adhesion of fluorine containing hydrophobic hydrogenated diamond-like carbon (F-H-DLC) coating against magnesium alloy AZ91. Surf. Coat. Technol. 267, 21–31 (2015)CrossRefGoogle Scholar
  36. 36.
    Abou Gharam, A., Lukitsch, M.J., Qi, Y., Alpas, A.T.: Role of oxygen and humidity on the tribo-chemical behaviour of non-hydrogenated diamond-like carbon coatings. Wear 271(9–10), 2157–2163 (2011)CrossRefGoogle Scholar
  37. 37.
    Chen, M., Meng-Burany, X., Perry, T.A., Alpas, A.T.: Micromechanisms and mechanics of ultra-mild wear in Al-Si alloys. Acta Mater. 56(19), 5605–5616 (2008)CrossRefGoogle Scholar
  38. 38.
    Ni, W., Cheng, Y., Weiner, A.M., Perry, T.A.: Tribological behavior of DLC coatings against aluminium alloys at elevated temperature. Surf. Coat. Technol. 201, 3229–3234 (2006)CrossRefGoogle Scholar
  39. 39.
    Liu, Y., Erdemir, A., Meletis, E.I.: A study of the wear mechanism of diamond-like carbon films. Surf. Coat. Technol. 82(1–2), 48–56 (1996)CrossRefGoogle Scholar
  40. 40.
    Funatani, K., Kurosawa, K., Fabiyi, P., Puz, M.: Improved engine performance via use of nickel ceramic composite coatings (NCC coat). In: SAE Technical Paper (1994)Google Scholar
  41. 41.
    Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • Zaixiu Yang
    • 1
  • Sukanta Bhowmick
    • 1
  • Anindya Banerji
    • 1
  • Ahmet T. Alpas
    • 1
    Email author
  1. 1.Department of Mechanical, Automotive and Materials EngineeringUniversity of WindsorWindsorCanada

Personalised recommendations