Tribology Letters

, 66:136 | Cite as

Dry Sliding Wear Behavior of Sn and NiSn Overlays on Cu Connectors

  • Ashutosh Sharma
  • Byungmin AhnEmail author
Original Paper


In this work, a systematic investigation of wear behavior of lead-free Sn and NiSn coatings under dry sliding conditions was studied. The Sn coatings were produced by electrodeposition method with varying current density from 0.1 to 0.5 Acm−2. For NiSn overlay, Sn coatings were deposited on pre-plated Ni on polished Cu foil substrates. The effects of current density, sliding distance, and load on friction coefficient (COF) and wear morphology were studied by employing ball-on-flat wear testing machine under dry sliding conditions. The tests were carried out under different loads from 5 to 25 N and for a sliding distance of 1800 m. The wear loss was evaluated in terms of track width and depth as well as mass loss of worn out tracks. The results show that the composition and microstructure of the electrodeposited overlays are related closely to the electrodeposition current density. The three-element CuNi(Sn) overlay exhibits a higher COF and excellent wear resistance as compared to Cu(Sn) overlay, the wear mechanism of plated overlays is also discussed and reported here.


Adhesion Unlubricated friction Nickel Tin Finishing Barrier films Plating Ball-on-flat 



Funding was provided by National Research Foundation of Korea (Grant Nos. NRF-2018R1D1A1B07044481 and NRF-2018R1D1A1B07044706).


  1. 1.
    Horvath, B., Illés, B., Shinohara, T.: Growth of intermetallics between Sn/Ni/Cu, Sn/Ag/Cu and Sn/Cu layered structures. Thin Solid Films 556, 345–353 (2014)CrossRefGoogle Scholar
  2. 2.
    Elmgren, P., Dixon, D., Hilty, R., Moyer, T., Lal, S., Nitsche, A., Teuber, F.: Pure tin—the finish of choice for connectors. In: Proc. IPC/JEDEC 4th Int. Conf. Lead Free Electronic Assemblies and Components, pp. 369–373. Frankfurt (2003)Google Scholar
  3. 3.
    Hammam, T.: Friction, wear and electric properties of tin-coated tin bronze for separable electric connectors. In: Proc. Forty-Second IEEE Holm Conf. Electrical Contacts. Joint with the 18th Int. Conf. Electrical Contacts, Chicago, IL (1996)Google Scholar
  4. 4.
    Sharma, A., Das, S., Das, K.: Pulse electroplating of ultrafine grained tin coating. In: Dr. Aliofkhazraei, M. (ed.) Electroplating of Nanostructures, pp. 105–129. InTech, Croatia (2015). CrossRefGoogle Scholar
  5. 5.
    Sharma, A., Das, S., Das, K.: Pulse electrodeposition of lead-free tin-based composites for microelectronic packaging. In: Dr. Mohamed, A.M.A. (ed.) Electrodeposition of Composite Materials, pp. 253–274. InTech, Croatia (2016). CrossRefGoogle Scholar
  6. 6.
    Sharma, A., Jang, Y.J., Kim, J.B., Jung, J.P.: Thermal cycling, shear and insulating characteristics of epoxy embedded Sn-3.0 Ag-0.5 Cu (SAC305) solder paste for automotive applications. J. Alloy. Compd. 704, 795–803 (2017)CrossRefGoogle Scholar
  7. 7.
    Khonsari, M.M., Booser, E.R.: Applied Tribology: Bearing Design and Lubrication. Wiley, New York (2001)Google Scholar
  8. 8.
    Pulkrabek, W.W.: Engineering Fundamentals of the Internal Combustion Engine. Prentice Hall, New Jersey (2003)Google Scholar
  9. 9.
    Tung, S.C., McMillan, M.L.: Automotive tribology overview of current advances and challenges for the future. Tribol. Int. 37, 517–536 (2004)CrossRefGoogle Scholar
  10. 10.
    Pratt, G.C.: Materials for plain bearings. Int. Mater. Rev. 18, 62–68 (1973)CrossRefGoogle Scholar
  11. 11.
    Ilangovan, S., Sellamuthu, R.: Effects of tin on hardness, wear rate and coefficient of friction of cast Cu-Ni-Sn alloys. J. Eng. Sci. Technol. 8(1), 34–43 (2013)Google Scholar
  12. 12.
    Whitley, J.H.: The tin commandments. Plat. Surf. Finish. 68(10), 38–39 (1981)Google Scholar
  13. 13.
    Wang, Y., Ding, D., Liu, T., Galuschki, K.P., Hu, Y., Gong, A., Shen, M., Sun, H., Wang, X., Sun, J., Li, M., Mao, D.: Effect of Ni barrier on the tin whisker formation of electroplating Sn on lead-frame alloy. In: Proc. 11th Int. Conf. Electronic Packaging Technology and High Density Packaging. IEEE, Xian (2010)Google Scholar
  14. 14.
    Liu, T., Ding, D., Wang, Y., Hu, Y., Gong, Y., Galuschki, K.P.: Ni barrier for tin whisker mitigation. In: Proc. 2nd IEEE CPMT Symposium. IEEE, Kyoto (2012)Google Scholar
  15. 15.
    Tetsuya, I., Masato, M., Kensaku, T., Yasuhiro, H.: Factors influencing fretting corrosion of tin plated contacts. SEI Tech. Rev. 64, 3–8 (2007)Google Scholar
  16. 16.
    Sharma, A., Sharma, S.: Co-electrodeposition of nanocomposites. In: Nalwa, H.S. (ed.) Encyclopedia of Nanoscience and Nanotechnology, vol. 27, pp. 89–124. American Scientific Publishers, Valencia (2018)Google Scholar
  17. 17.
    Sen, R., Sharma, A., Bhattacharya, S., Das, S., Das, K.: Synthesis and characterization of pulse co-electrodeposited nickel/ceria nanocomposites. J. Nanosci. Nanotechnol. 10(8), 4998–5003 (2010)CrossRefGoogle Scholar
  18. 18.
    Pandey, S.K., Singh, R.: Experimental investigation of surface properties of hardox 400 hardfaced with WC. IJERT 5(5), 622–626 (2016)Google Scholar
  19. 19.
    Neuffer, H., Ghaednia, H., Jackson, R.: Wear volume analysis using a nano-lubricant for ball-on-disk testing. Tribol. Lubr. Technol. 2, 22–24 (2014)Google Scholar
  20. 20.
    Cullity, B.D., Stock, S.R.: Elements of X-Ray Diffraction. 3rd edn., Prentice-Hall, Inc., New York, New Jersey (2001)Google Scholar
  21. 21.
    Sharma, A., Bhattacharya, S., Das, S., Das, K.: A study on the effect of pulse electrodeposition parameters on the morphology of pure tin coatings. Metall. Mater. Trans. A 45, 4610–4622 (2014)CrossRefGoogle Scholar
  22. 22.
    Sharma, A., Bhattacharya, S., Sen, R., Reddy, B.S.B., Fecht, H.J., Das, K., Das, S.: Influence of current density on microstructure of pulse electrodeposited tin coatings. Mater. Charact. 68, 22–32 (2012)CrossRefGoogle Scholar
  23. 23.
    Sharma, A., Bhattacharya, S., Das, S., Das, K.: Influence of current density on surface morphology and properties of pulse plated tin films from citrate electrolyte. Appl. Surf. Sci. 290, 373–380 (2014)CrossRefGoogle Scholar
  24. 24.
    Sharma, A., Jang, Y.J., Jung, J.P.: Effect of current density on morphology of electroplated tin. Surf. Eng. 31(6), 458–464 (2015)CrossRefGoogle Scholar
  25. 25.
    Yi, J.B., Li, X.P., Ding, J., Seet, H.L.: Study of the grain size, particle size and roughness of substrate in relation to the magnetic properties of electroplated permalloy. J. Alloy. Compd. 428, 230–236 (2007)CrossRefGoogle Scholar
  26. 26.
    Snugovsky, L., Cermignani, C., Perovic, D.D., Rutter, J.W.: The solid solubility of Ag and Cu in the Sn phase of eutectic and near-eutectic Sn-Ag-Cu solder alloys. J. Electron. Mater. 33(11), 1313–1315 (2004)CrossRefGoogle Scholar
  27. 27.
    Tanabe, Y., Shimizu, Y.: Electron microscopic investigation on microstructure and phase of electrodeposited Ni-Sn alloys. J. Met. Finish. 26, 406–410 (1975)CrossRefGoogle Scholar
  28. 28.
    Satto, T., Ezure, K., Hayashi, T., Sakata, S.: Behavior of tin electrodeposition and spontaneous tin alloy formation on Ni-flash-coated steel surface. J. Iron Steel 72, 1173–1180 (1986)CrossRefGoogle Scholar
  29. 29.
    Chia, P.Y., Haseeb, A.S.M.A., Mannan, S.M.: Reactions in electrodeposited Cu/Sn and Cu/Ni/Sn nanoscale multilayers for interconnects. Materials 9, 430–444 (2016)CrossRefGoogle Scholar
  30. 30.
    Wang, W., Wen, H., He, N., Chen, W.: Effect of load on tribological properties of silicon nitride/steel under rolling sliding contact condition. Tribol. Int. 125, 27–28 (2018)CrossRefGoogle Scholar
  31. 31.
    Mangam, V., Bhattacharya, S., Das, K., Das, S.: Friction and wear behavior of Cu–CeO2 nanocomposite coatings synthesized by pulsed electrodeposition. Surf. Coat. Technol. 205(3), 801–805 (2010)CrossRefGoogle Scholar
  32. 32.
    Liu, J.J., Zhu, B.L., Zhang, X.S.: A study of the wear resistance and microstructure of Pb-Sn and Pb-Sn-Ni brush-plating layers. Wear 155, 63–72 (1992)CrossRefGoogle Scholar
  33. 33.
    Sharma, A., Bhattacharya, S., Das, S., Fecht, H.-J., Das, K.: Development of lead free pulse electrodeposited tin based composite solder coating reinforced with ex situ cerium oxide nanoparticles. J. Alloy. Compd. 574, 609–616 (2013)CrossRefGoogle Scholar
  34. 34.
    Ando, Y., Ogawa, H., Ishikawa, Y.: Characteristics of friction in small contact surface. Dissipative processes in tribology. In: Proc. 20th Leeds-Lyon Symposium on Tribology, Laboratoire de Mécanique Des Contacts, Institut National Des Sciences Appliquées de Lyon, pp. 253–260, Lyon (1994)Google Scholar
  35. 35.
    Lee, K.U., Jeong, D.K., Joo, H.G., Park, Y.W.: Simulation for fretting corrosion of tin-coated copper contacts. Mater. Corr. 62(4), 352–356 (2011)CrossRefGoogle Scholar
  36. 36.
    Sharma, A., Bhattacharya, S., Das, S., Das, K.: Fabrication of Sn-Ag/CeO2 electro-composite solder by pulse electrodeposition. Metall. Mater. Trans. A 44(12), 5587–5601 (2013)CrossRefGoogle Scholar
  37. 37.
    Noel, S., Alamarguy, D., Correia, S., Laurat, P.: Fretting behavior of nickel coatings for electrical contact applications. In: Proc. IEEE 57th Holm Conference on Electrical Contacts, Minneapolis (2011)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Energy Systems Research and Department of Materials Science and EngineeringAjou UniversitySuwonSouth Korea

Personalised recommendations