Advertisement

Tribology Letters

, 66:133 | Cite as

Dynamic Characterisation of Rectangular Aerostatic Pads with Multiple Inherent Orifices

  • F. ColomboEmail author
  • L. Lentini
  • T. Raparelli
  • A. Trivella
  • V. Viktorov
Original Paper
  • 61 Downloads

Abstract

Aerostatic pads are successfully employed in linear systems where very accurate and precise positioning is required, e.g. machine tools and measuring equipment. Both the static and dynamic performance of many different types of aerostatic pads have been already numerically and experimentally investigated. However, literature does not present so many works that investigate the performance of rectangular aerostatic pads with multiple restrictors, especially as regards their dynamic features. This paper shows an experimental and a numerical study of the static and dynamic performance of a rectangular aerostatic pad with multiple orifices distributed on a supply rectangle. The paper investigates the effect of the orifices diameter, of their position and of the supply pressure on the pad performance.

Keywords

Aerostatic bearings Dynamic identification Gas lubrication 

References

  1. 1.
    Lentini, L., Moradi, M., Colombo, F.: A historical review of gas lubrication: from reynolds to active compensations. Tribol. Ind. 40(2), 165–182 (2018).  https://doi.org/10.24874/ti.2018.40.02.01 CrossRefGoogle Scholar
  2. 2.
    Raparelli, T., Viktorov, V., Colombo, F., Lentini, L.: Aerostatic thrust bearings active compensation: critical review. Precis. Eng. 44, 1–12 (2016)CrossRefGoogle Scholar
  3. 3.
    Al-Bender, F.: On the modelling of the dynamic characteristics of aerostatic bearing films: from stability analysis to active compensation. Precis. Eng. 33(2), 117–126 (2009)CrossRefGoogle Scholar
  4. 4.
    Belforte, G., Raparelli, T., Trivella, A., Viktorov, V., Visconte, C.: CFD analysis of a simple orifice-type feeding system for aerostatic bearings. Tribol. Lett. 58(2), 25 (2015)CrossRefGoogle Scholar
  5. 5.
    Belforte, G., Raparelli, T., Viktorov, V., Trivella, A: Discharge coefficients of orifice-type restrictor for aerostatic bearings. Tribol. Int. 40(3), 512–521 (2007)CrossRefGoogle Scholar
  6. 6.
    Belforte, G., Colombo, F., Raparelli, T., Trivella, A., Viktorov, V.: Experimental analysis of air pads with micro holes. Tribol. Trans. 56(2), 169–177 (2013)CrossRefGoogle Scholar
  7. 7.
    Kazimierski, Z., Trojnarski, J.: Investigations of externally pressurized gas bearings with different feeding systems. J. Lubr. Technol. 102(1), 59–64 (1980)CrossRefGoogle Scholar
  8. 8.
    Boffey, D.A., Duncan, A.E., Dearden, J.K.: An experimental investigation of the effect of orifice restrictor size on the stiffness of an industrial air lubricated thrust bearing. Tribol. Int. 14(5), 287–291 (1981)CrossRefGoogle Scholar
  9. 9.
    Boffey, D.A., Wilson, P.M.: An experimental investigation of the pressures at the edge of a gas bearing pocket. J. Lubr. Technol. 103(4), 593–600 (1981)Google Scholar
  10. 10.
    Chen, X.-D., He, X.-M.: The effect of the recess shape on performance analysis of the gas-lubricated bearing in optical lithography. Tribol. Int. 39(11), 1336–1341 (2006)CrossRefGoogle Scholar
  11. 11.
    Li, Y.T., Ding, H.: Influences of the geometrical parameters of aerostatic thrust bearing with pocketed orifice—type restrictor on its performance. Tribol. Int. 40(7), 1120–1126 (2007)CrossRefGoogle Scholar
  12. 12.
    Talukder, H.M., Stowell, T.B.: Pneumatic hammer in an externally pressurized orifice-compensated air journal bearing. Tribol. Int. 36(8), 585–591 (2003)CrossRefGoogle Scholar
  13. 13.
    Grossman, R.L.: Application of flow and stability theory to the design of externally pressurized spherical gas bearings. J. Basic Eng. 85(4), 495–502 (1963)CrossRefGoogle Scholar
  14. 14.
    Colombo, F., Moradi, M., Raparelli, T., Trivella, A., Viktorov, V.: Multiple holes rectangular gas thrust bearing: dynamic stiffness calculation with lumped parameters approach. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science, pp. 421–429. Springer, New York (2017)CrossRefGoogle Scholar
  15. 15.
    Al Bender, F.: Contributions to the Design Theory of Circular Centrally Fed Aerostatic Bearings. Phd thesis, Katholieke Universiteit Leuven (1992)Google Scholar
  16. 16.
    Richardson, H.H., Cambridge, M.: 1958, “Static and Dynamic Characteristics of Compensated Gas Bearings,” Trans ASME, pp. 1503–1509Google Scholar
  17. 17.
    Licht, L., Fuller, D.D., Sternlicht, B.: Self-excited vibrations of an air-lubricated thrust bearing. Trans ASME 80(2), 411–414 (1958)Google Scholar
  18. 18.
    Licht, L., Elrod, H.: A study of the stability of externally pressurized gas bearings. J. Appl. Mech. 27(2), 250–258 (1960)CrossRefGoogle Scholar
  19. 19.
    Turnblade, R.C.: The molecular transit time and its correlation with the stability of externally pressurized gas-lubricated bearings. J. Basic Eng. 85(2), 297–303 (1963)CrossRefGoogle Scholar
  20. 20.
    Salbu, E.O.J.: Compressible squeeze films and squeeze bearings. J. Basic Eng. 86(2), 355–364 (1964)CrossRefGoogle Scholar
  21. 21.
    Blondeel, E., Snoeys, R., Devrieze, L.: Dynamic stability of externally pressurized gas bearings. J. Lubr. Technol. 102(4), 511–519 (1980)CrossRefGoogle Scholar
  22. 22.
    Plessers, P., Snoeys, R.: Dynamic identification of convergent externally pressurized gas-bearing gaps. J. Tribol. 110(2), 263–270 (1988)CrossRefGoogle Scholar
  23. 23.
    Plessers, P., Snoeys, R.: Dynamic stability of mechanical structures containing externally pressurized gas-lubricated thrust bearings. J. Tribol. 110(2), 271–278 (1988)CrossRefGoogle Scholar
  24. 24.
    Stiffler, A.K.: Analysis of the stiffness and damping of an inherently compensated, multiple-inlet, circular thrust bearing. J. Lubr. Technol. 96(3), 329–336 (1974)CrossRefGoogle Scholar
  25. 25.
    Stiffler, A.K., Smith, D.M.: Dynamic characteristics of an inherently compensated, square, gas film bearing. J. Lubr. Technol. 97(1), 52–62 (1975)CrossRefGoogle Scholar
  26. 26.
    Miyatake, M., Yoshimoto, S.: Numerical investigation of static and dynamic characteristics of aerostatic thrust bearings with small feed holes. Tribol. Int. 43(8), 1353–1359 (2010)CrossRefGoogle Scholar
  27. 27.
    Renn, J.-C., Hsiao, C.-H.: Experimental and CFD study on the mass flow-rate characteristic of gas through orifice-type restrictor in aerostatic bearings. Tribol. Int. 37(4), 309–315 (2004)CrossRefGoogle Scholar
  28. 28.
    Nishio, U., Somaya, K., Yoshimoto, S.: Numerical calculation and experimental verification of static and dynamic characteristics of aerostatic thrust bearings with small feedholes. Tribol. Int. 44(12), 1790–1795 (2011)CrossRefGoogle Scholar
  29. 29.
    Charki, A., Diop, K., Champmartin, S., Ambari, A.: Numerical simulation and experimental study of thrust air bearings with multiple orifices. Int. J. Mech. Sci. 72, 28–38 (2013)CrossRefGoogle Scholar
  30. 30.
    Bhat, N., Kumar, S., Tan, W., Narasimhan, R., Low, T.C.: Performance of inherently compensated flat pad aerostatic bearings subject to dynamic perturbation forces. Precis. Eng. 36(3), 399–407 (2012)CrossRefGoogle Scholar
  31. 31.
    Colombo, F., Lentini, L., Raparelli, T., Trivella, A., Viktorov, V.: Dynamic Model of a Grooved Thrust Bearing: Numerical Model and Experimental Validation. In: Proceeding of the 23rd Conference of the Italian Association of Theoretical and Applied Mechanics, AIMETA 2017, vol. 4, pp. 506–517 (2017)Google Scholar
  32. 32.
    Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Experimental identification of an aerostatic thrust bearing. In: Boschetti, G., Gasparetto, A. (eds.) Advances in Italian Mechanism Science, pp. 441–448. Springer, New York (2017)CrossRefGoogle Scholar
  33. 33.
    Lentini, L.: Design, test and identification of an active aerostatic thrust bearing with a compliant mechanism and piezo actuator. Politecnico di Torino (2017)Google Scholar
  34. 34.
    Aguirre, G., Al-Bender, F., Van Brussel, H.: A Multiphysics Model for Optimizing the Design of Active Aerostatic Thrust Bearings. Precis. Eng. 34(3), 507–515 (2010)CrossRefGoogle Scholar
  35. 35.
    Iruikwu, D., Isomaa, J.-M., Korkolainen, P., Kiviluoma, P., Kuosmanen, P., Calonius, O.: Dynamic loading system for air bearing testing. In: Proceedings of the International Conference of DAAAM Baltic “Industrial Engineering” pp. 309–314 (2012)Google Scholar
  36. 36.
    Yoshimoto, S., Kohno, K.: Static and dynamic characteristics of aerostatic circular porous thrust bearings (effect of the shape of the air supply area). J. Tribol. 123(3), 501 (2001)CrossRefGoogle Scholar
  37. 37.
    Yoshimoto, S., Tamura, J., Nakamura, T.: Dynamic tilt characteristics of aerostatic rectangular double-pad thrust bearings with compound restrictors. Tribol. Int. 32(12), 731–738 (1999)CrossRefGoogle Scholar
  38. 38.
    Colombo, F., Lentini, L., Raparelli, T., Viktorov, V.: Actively compensated aerostatic thrust bearing: design, modelling and experimental validation. Meccanica. 52, 3645–3660 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical and Aerospace EngineeringPolitecnico di TorinoTorinoItaly

Personalised recommendations