Advertisement

Tribology Letters

, 66:124 | Cite as

First-Principles Investigation on the Tribological Properties of h-BN Bilayer Under Variable Load

  • Renhui ZhangEmail author
  • Juan Zhao
  • Jibin PuEmail author
  • Zhibin Lu
Original Paper
  • 153 Downloads

Abstract

Using first-principles method, for h-BN bilayer, we successfully probe the major factors of different low-friction paths in the three-dimensional potential energy surface (3D-PES) under variable loads. By means of the static PES and charge density difference analysis, we demonstrate how electrostatic interactions, with regard for van der Waals contributions at 0 nN, progressively impact the shape of 3D-PES and low-friction paths with increasing the normal load. Herein, the sliding properties of h-BN bilayers have a distinct relative orientation. Especially, the load-induced 3D-PES with variable shape is assigned to the band gap and repulsive van der Waals force. It is noted that the low friction not only is obtained for the commensurate layers under low loads, but also high ones.

Keywords

h-BN First-principles 3D-PES Load 

Notes

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 51605336), the Foundation of the Department of Education of Guizhou province (Grant Nos. KY [2016] 009 and KY [2016] 106), the Key Research Program of Frontier Sciences, CAS (Grant Nos. QYZDY-SSW-JSC009 and U1737214), and Provincial Key Disciplines of Chemical Engineering and Technology in Guizhou Province (No. ZDXK[2017] 8).

Compliance with Ethical Standards

Conflict of interest

The authors declare no competing financial interest.

Supplementary material

11249_2018_1078_MOESM1_ESM.avi (13 mb)
Supplementary material 1 (AVI 13337 KB)

References

  1. 1.
    Yi, M., Shen, Z., Zhao, X., Liang, S., Liu, L.: Boron nitride nanosheets as oxygen-atom corrosion protective coatings. Appl. Phys. Lett. 104(14), 143101 (2014).  https://doi.org/10.1063/1.4870530 CrossRefGoogle Scholar
  2. 2.
    Xu, M., Liang, T., Shi, M., Chen, H.: Graphene-like two-dimensional materials. Chem. Rev. 113(5), 3766–3798 (2013).  https://doi.org/10.1021/cr300263a CrossRefGoogle Scholar
  3. 3.
    Golberg, D., Bando, Y., Huang, Y., Terao, T., Mitome, M., Tang, C., Zhi, C.: Boron nitride nanotubes and nanosheets. ACS Nano. 4(6), 2979–2993 (2010).  https://doi.org/10.1021/nn1006495 CrossRefGoogle Scholar
  4. 4.
    Eichler, J., Lesniak, C.: Boron nitride (BN) and BN composites for high-temperature applications. J. Eur. Ceram. Soc. 28(5), 1105–1109 (2008).  https://doi.org/10.1016/j.jeurceramsoc.2007.09.005 CrossRefGoogle Scholar
  5. 5.
    Song, L., Ci, L., Lu, H., Sorokin, P.B., Jin, C., Ni, J., Kvashnin, A.G., Kvashnin, D.G., Lou, J., Yakobson, B.I., Ajayan, P.M.: Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett. 10(8), 3209–3215 (2010).  https://doi.org/10.1021/nl1022139 CrossRefGoogle Scholar
  6. 6.
    Zhi, C., Bando, Y., Tang, C., Kuwahara, H., Golberg, D.: Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21(28), 2889–2893 (2009).  https://doi.org/10.1002/adma.200900323 CrossRefGoogle Scholar
  7. 7.
    Shen, H., Guo, J., Wang, H., Zhao, N., Xu, J.: Bioinspired modification of h-BN for high thermal conductive composite films with aligned structure. ACS Appl. Mater. Interfaces. 7(10), 5701–5708 (2015).  https://doi.org/10.1021/am507416y CrossRefGoogle Scholar
  8. 8.
    Xuemei, L., Jun, Y., Jianxin, Z., Wanlin, G.: Large area hexagonal boron nitride monolayer as efficient atomically thick insulating coating against friction and oxidation. Nanotechnology 25(10), 105701 (2014)CrossRefGoogle Scholar
  9. 9.
    Watanabe, S., Miyake, S., Murakawa, M.: Tribological properties of cubic, amorphous and hexagonal boron nitride films. In: Metallurgical Coatings and Thin Films, pp. 406–410. Oxford, Elsevier (1991)Google Scholar
  10. 10.
    Cho, D.-H., Kim, J.-S., Kwon, S.-H., Lee, C., Lee, Y.-Z.: Evaluation of hexagonal boron nitride nano-sheets as a lubricant additive in water. Wear. 302(1), 981–986 (2013).  https://doi.org/10.1016/j.wear.2012.12.059 CrossRefGoogle Scholar
  11. 11.
    Podgornik, B., Kosec, T., Kocijan, A., Donik, Č: Tribological behaviour and lubrication performance of hexagonal boron nitride (h-BN) as a replacement for graphite in aluminium forming. Tribol. Int. 81, 267–275 (2015).  https://doi.org/10.1016/j.triboint.2014.09.011 CrossRefGoogle Scholar
  12. 12.
    Kumari, S., Sharma, O.P., Gusain, R., Mungse, H.P., Kukrety, A., Kumar, N., Sugimura, H., Khatri, O.P.: Alkyl-chain-grafted hexagonal boron nitride nanoplatelets as oil-dispersible additives for friction and wear reduction. ACS Appl. Mater. Interfaces. 7(6), 3708–3716 (2015).  https://doi.org/10.1021/am5083232 CrossRefGoogle Scholar
  13. 13.
    Wei, D., Meng, Q., Jia, D.: Mechanical and tribological properties of hot-pressed h-BN/Si3N4 ceramic composites. Ceram. Int. 32(5), 549–554 (2006).  https://doi.org/10.1016/j.ceramint.2005.04.010 CrossRefGoogle Scholar
  14. 14.
    Tyagi, R., Xiong, D., Li, J.: Effect of load and sliding speed on friction and wear behavior of silver/h-BN containing Ni-base P/M composites. Wear. 270(7), 423–430 (2011).  https://doi.org/10.1016/j.wear.2010.08.013 CrossRefGoogle Scholar
  15. 15.
    Koskilinna, J.O., Linnolahti, M., Pakkanen, T.A.: Friction coefficient for hexagonal boron nitride surfaces from ab initio calculations. Tribol. Lett. 24(1), 37–41 (2006).  https://doi.org/10.1007/s11249-006-9120-x CrossRefGoogle Scholar
  16. 16.
    Clark Stewart, J., Segall Matthew, D., Pickard Chris, J., Hasnip Phil, J., Probert Matt, I.J., Refson, K., Mike, P.: First principles methods using CASTEP. Zeitschrift für Kristallographie 220, 567 (2005)Google Scholar
  17. 17.
    Björkman, T., Gulans, A., Krasheninnikov, A.V., Nieminen, R.M.: van der Waals bonding in layered compounds from advanced density-functional first-principles calculations. Phys. Rev. Lett. 108(23), 235502 (2012)CrossRefGoogle Scholar
  18. 18.
    Zhang, R., Zhao, J., Yang, Y., Shi, W., Lu, Z., Wang, J.: Understanding the friction behavior of sulfur-terminated diamond-like carbon films under high vacuum by first-principles calculations. Curr. Appl. Phys. 18(3), 317–323 (2018).  https://doi.org/10.1016/j.cap.2018.01.006 CrossRefGoogle Scholar
  19. 19.
    Grimme, S.: Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 27(15), 1787–1799 (2006).  https://doi.org/10.1002/jcc.20495 CrossRefGoogle Scholar
  20. 20.
    Liu, L., Feng, Y.P., Shen, Z.X.: Structural and electronic properties of h-BN. Phys. Rev. B 68(10), 104102 (2003)CrossRefGoogle Scholar
  21. 21.
    Zilibotti, G., Righi, M.C.: Ab initio calculation of the adhesion and ideal shear strength of planar diamond interfaces with different atomic structure and hydrogen coverage. Langmuir. 27(11), 6862–6867 (2011).  https://doi.org/10.1021/la200783a CrossRefGoogle Scholar
  22. 22.
    Zhang, Q., Qi, Y., Hector, L.G., Cagin, T., Goddard, W.A.: Origin of static friction and its relationship to adhesion at the atomic scale. Phys. Rev. B. 75(14), 144114 (2007).  https://doi.org/10.1103/PhysRevB.75.144114 CrossRefGoogle Scholar
  23. 23.
    Neuville, S.: Carbon Structure Analysis with Differentiated Raman Spectroscopy: Refined Raman Spectroscopy Fundamentals For Improved Carbon Material Engineering. Riga, LAP Lambert Academic Publishing, (2014)Google Scholar
  24. 24.
    Sachdev, H., Haubner, R., Nöth, H., Lux, B.: Investigation of the c-BN/h-BN phase transformation at normal pressure. Diam. Relat. Mater. 6(2), 286–292 (1997).  https://doi.org/10.1016/S0925-9635(96)00697-8 CrossRefGoogle Scholar
  25. 25.
    Neuville, S.: Antiwear material criterial. JPJ Solids Struct 3, 33–42 (2009)Google Scholar
  26. 26.
    Neuville, S.: Quantum electronic mechanisms of atomic rearrangements during growth of hard carbon films. Surf. Coatings Technol. 206(4), 703–726 (2011).  https://doi.org/10.1016/j.surfcoat.2011.07.055 CrossRefGoogle Scholar
  27. 27.
    Tománek, D., Zhong, W., Thomas, H.: Calculation of an atomically modulated friction force in atomic-force microscopy. EPL 15(8), 887 (1991)CrossRefGoogle Scholar
  28. 28.
    Chen, B., Bi, Q., Yang, J., Xia, Y., Hao, J.: Tribological properties of solid lubricants (graphite, h-BN) for Cu-based P/M friction composites. Tribol. Int. 41(12), 1145–1152 (2008).  https://doi.org/10.1016/j.triboint.2008.02.014 CrossRefGoogle Scholar
  29. 29.
    Pawlak, Z., Kaldonski, T., Pai, R., Bayraktar, E., Oloyede, A.: A comparative study on the tribological behaviour of hexagonal boron nitride (h-BN) as lubricating micro-particles—an additive in porous sliding bearings for a car clutch. Wear. 267(5), 1198–1202 (2009).  https://doi.org/10.1016/j.wear.2008.11.020 CrossRefGoogle Scholar
  30. 30.
    An, X., Sun, J., Lu, Z., Ma, F., Zhang, G.: Pressure-induced insulator-semiconductor transition in bilayer hexagonal boron nitride. Ceram. Int. 43(8), 6626–6630 (2017).  https://doi.org/10.1016/j.ceramint.2017.02.037 CrossRefGoogle Scholar
  31. 31.
    Zhang, R., Wang, L.: Effect of compressive strain on the Hertzian contact of self-mated fluorinated carbon films. RSC Adv. 5(52), 41604–41607 (2015).  https://doi.org/10.1039/C5RA06569K CrossRefGoogle Scholar
  32. 32.
    He, X.Q., Kitipornchai, S., Liew, K.M.: Buckling analysis of multi-walled carbon nanotubes: a continuum model accounting for van der Waals interaction. J. Mech. Phys. Solids. 53(2), 303–326 (2005).  https://doi.org/10.1016/j.jmps.2004.08.003 CrossRefGoogle Scholar
  33. 33.
    Feiler, A.A., Bergström, L., Rutland, M.W.: Superlubricity using repulsive van der Waals forces. Langmuir. 24(6), 2274–2276 (2008).  https://doi.org/10.1021/la7036907 CrossRefGoogle Scholar
  34. 34.
    Yakubov, G.E., McColl, J., Bongaerts, J.H.H., Ramsden, J.J.: Viscous boundary lubrication of hydrophobic surfaces by mucin. Langmuir. 25(4), 2313–2321 (2009).  https://doi.org/10.1021/la8018666 CrossRefGoogle Scholar
  35. 35.
    Thormann, E., Yun, S.H., Claesson, P.M., Linnros, J.: Amontonian friction induced by flexible surface features on microstructured silicon. ACS Appl. Mater. Interfaces. 3(9), 3432–3439 (2011).  https://doi.org/10.1021/am200657d CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Research Center of Material and Chemical Engineering, School of Material and Chemical EngineeringTongren UniversityTongrenPeople’s Republic of China
  2. 2.Key Laboratory of Marine Materials and Related Technologies, Zhejiang Key Laboratory of Marine Materials and Protective Technologies, Ningbo Institute of Materials Technology and EngineeringChinese Academy of SciencesNingboPeople’s Republic of China
  3. 3.State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemicals PhysicsChinese Academy of SciencesLanzhouPeople’s Republic of China

Personalised recommendations