Advertisement

Tribology Letters

, 66:126 | Cite as

Molecular Dynamics Simulation Study of Mechanical Effects of Lubrication on a Nanoscale Contact Process

  • S. Stephan
  • M. P. Lautenschlaeger
  • I. Alabd Alhafez
  • M. T. Horsch
  • H. M. Urbassek
  • H. Hasse
Original Paper
  • 293 Downloads

Abstract

Using molecular dynamics simulation, we study the effect of a lubricant on indentation and scratching of a Fe surface. By comparing a dry reference case with two lubricated contacts—differing in the adsorption strength of the lubricant—the effects of the lubricant can be identified. We find that after an initial phase, in which the lubricant is squeezed out of the contact zone, the contact between the indenter and the substrate is essentially dry. The number of lubricant molecules confined in the tip-substrate gap increases with the lubricant adsorption energy. Trapped lubricant broadens the tip area active in the scratching process—mainly on the flanks of the groove—compared to a dry reference case. This leads to a slight increase in chip height and volume, and also contributes to the scratching forces.

Keywords

Nanoindentation Lubrication Molecular dynamics Single asperity contact Squeeze-out 

Notes

Acknowledgements

The authors gratefully acknowledge financial support by the DFG within IRTG 2057 Physical Modeling for Virtual Manufacturing Systems and Processes and CRC 926 Microscale Morphology of Component Surfaces. The simulations were carried out on the HAZELHEN at High Performance Computing Center Stuttgart (HLRS), on the ELWE at Regional University Computing Center Kaiserslautern (RHRK) under the grant TUKL-TLMV as well as on the SUPERMUC at Leibniz Supercomputing Centre (LRZ) Garching within the computing project SPARLAMPE (pr48te). The present research was conducted under the auspices of the Boltzmann-Zuse Society of Computational Molecular Engineering (BZS).

References

  1. 1.
    Maekawa, K., Itoh, A.: Friction and tool wear in nano-scale machining: a molecular dynamics approach. Wear 188, 115 (1995)CrossRefGoogle Scholar
  2. 2.
    Komanduri, R., Chandrasekaran, N., Raff, L.: A review on the molecular dynamics simulation of machining at the atomic scale. Proc. Inst. Mech. Eng. B 215, 1639 (2001)CrossRefGoogle Scholar
  3. 3.
    Alhafez, I., Brodyanski, A., Kopnarski, M., Urbassek, H.: Influence of tip geometry on nanoscratching. Tribol. Lett. 65(26), 1 (2017)Google Scholar
  4. 4.
    Gao, Y., Lu, C., Huynh, N., Michal, G., Zhu, H., Tieu, A.: Molecular dynamics simulation of effect of indenter shape on nanoscratching of Ni. Wear 267, 1998 (2009)CrossRefGoogle Scholar
  5. 5.
    Alhafez, I., Urbassek, H.: Scratching of hcp metals: a molecular-dynamics study. Comput. Mater. Sci. 113, 187 (2016)CrossRefGoogle Scholar
  6. 6.
    Gao, Y., Ruestes, C., Urbassek, H.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. 90, 232 (2014)CrossRefGoogle Scholar
  7. 7.
    Wu, C., Fang, T., Lin, J.: Atomic-scale simulations of material behaviors and tribology properties for FCC and BCC metal films. Mater. Lett. 80, 59 (2012)CrossRefGoogle Scholar
  8. 8.
    Gao, Y., Ruestes, C.J., Tramontina, D.R., Urbassek, H.M.: Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Solids 75(Supplement C), 58 (2015).  https://doi.org/10.1016/j.jmps.2014.11.005 CrossRefGoogle Scholar
  9. 9.
    Gao, Y., Urbassek, H.: Scratching of nanocrystalline metals: a molecular dynamics study of Fe. Appl. Surf. Sci. 389, 688 (2016)CrossRefGoogle Scholar
  10. 10.
    Zhang, L., Zhao, H., Yang, Y., Huang, H., Ma, Z., Shao, M.: Evaluation of repeated single-point diamond turning on the deformation behavior of monochrystalline silicon via molecular dynamics simulation. Appl. Phys. A 116, 141–150 (2014)CrossRefGoogle Scholar
  11. 11.
    Li, Y., Goyal, A., Chernatynski, A., Jayashanker, J., Kautzky, M., Sinnott, S., Phillpot, S.: Nanoindentation of gold and gold alloys by molecular dynamics simulations. Mater. Sci. Eng. A 651, 346 (2016)CrossRefGoogle Scholar
  12. 12.
    Aristizibal, H., Parra, P., Lpez, P., Restrepo-Parra, E.: Atomistic-scale simulations of material behaviors and tribology properties for BCC metal films. Chin. Phys. B 25, 010204 (2016)CrossRefGoogle Scholar
  13. 13.
    Gao, Y., Brodyanski, A., Kopnarski, M., Urbassek, H.: Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput. Mater. Sci. 103, 77 (2015)CrossRefGoogle Scholar
  14. 14.
    Israelachvili, J.: Intermolecular and Surface Forces, 3rd edn. Academic Press, San Diego (2011)Google Scholar
  15. 15.
    Szlufarska, I., Chandross, M., Carpick, R.: Recent advances in single-asperity nanotribology. J. Phys. D 41, 123001 (2008)CrossRefGoogle Scholar
  16. 16.
    Vanossi, A., Manini, N., Urbakh, M., Zapperi, S., Tosatti, E.: Modeling friction: from nanoscale to mesoscale. Rev. Mod. Phys. 85, 512 (2013)CrossRefGoogle Scholar
  17. 17.
    Müser, M.: Theory and simulation of friction and lubrication. Lect. Notes Phys. 704, 65 (2006)CrossRefGoogle Scholar
  18. 18.
    Zheng, X., Zhu, H., Tieu, A., Kosasih, B.: A molecular dynamics simulation of 3d rough lubricated contact. Tribol. Int. 67, 217 (2013)CrossRefGoogle Scholar
  19. 19.
    Zheng, X., Zhu, H., Kosasih, B., Tieu, A.: A molecular dynamics simulation of boundary lubrication: the effect of \(n\)-alkanes chain length and normal load. Wear 301, 62 (2013)CrossRefGoogle Scholar
  20. 20.
    Sivebaek, I., Persson, B.: The effect of surface nano-corrugation on the squeeze-out of molecular thin hydrocarbon films between curved surfaces with long range elasticity. Nanotechnology 27, 445401 (2016)CrossRefGoogle Scholar
  21. 21.
    Ren, J., Zhao, J., Dong, Z., Liu, P.: Molecular dynamics study on the mechanism of afm-based nanoscratching process with water-layer lubrication. Appl. Surf. Sci. 346, 84 (2015)CrossRefGoogle Scholar
  22. 22.
    Chen, R., Liang, M., Luo, J., Lei, H., Guo, D., Hu, X.: Comparison of surface damage under the dry and wet impact: molecular dynamics simulation. Appl. Surf. Sci. 258, 1756 (2011)CrossRefGoogle Scholar
  23. 23.
    Tang, C., Zhang, L.: A molecular dynamics analysis of the mechanical effect of water on the deformation of silicon monocrystals subjected to nano-indentation. Nanotechnology 16, 15 (2005)CrossRefGoogle Scholar
  24. 24.
    Chen, Y., Han, H., Fang, F., Hu, X.: Md simulation of nanometric cutting of copper with and without water lubrication. Sci. China 57, 1154 (2014)CrossRefGoogle Scholar
  25. 25.
    Chandross, M., Lorenz, C., Stevens, M., Grest, G.: Simulations of nanotribology with realistic probe tip models. Langmuir 24, 1240 (2008)CrossRefGoogle Scholar
  26. 26.
    An, R., Huang, L., Long, Y., Kalanyan, B., Lu, X., Gubbins, K.: Liquid-soild nanofriction and interfacial wetting. Langmuir 32, 743 (2015)CrossRefGoogle Scholar
  27. 27.
    Shi, J., Zhang, Y., Sun, K., Fang, L.: Effect of water film on the plastic deformation of monocrystalline copper. RSC Adv. 6, 96824 (2016)CrossRefGoogle Scholar
  28. 28.
    Jeng, Y., Tsai, P., Liu, Y.: Adsorbed multilayer effects on the mechanical properties in nanometer indentation depth. Mater. Res. Bull. 44, 1995 (2009)CrossRefGoogle Scholar
  29. 29.
    Lee, W., Ju, S., Cheng, C.: A molecular dynamics study of nanoindentation on a methyl methacrylate ultrathin film on a Au (111) substrate: interface and thickness effects. Langmuir 24, 13440 (2008)CrossRefGoogle Scholar
  30. 30.
    Yang, F., Carpick, R., Srolovitz, D.: Mechanics of contact, adhesion and failure of metallic nanoasperites in the presence of adsorbates: toward conductive contact design. ACS Nano 11, 490 (2017)CrossRefGoogle Scholar
  31. 31.
    Dai, L., Sorkin, V., Zhang, Y.: Effect of surface chemistry on the mechanics and governing laws of friction and wear. ACS Appl. Mater. Interf. 8, 8765 (2016)CrossRefGoogle Scholar
  32. 32.
    Shiari, B., Miller, R., Klug, D.: Multiscale simulation of material removal processes at the nanoscale. J. Mech. Phys. Solids 55, 2384 (2007)CrossRefGoogle Scholar
  33. 33.
    Greiner, C., Felts, J., Dai, Z., King, R., Carpick, W.P.: Controlling nanoscale friction through th competition between capillary adsorption and thermally activated sliding. ACS Nano 6(5), 4305 (2012)CrossRefGoogle Scholar
  34. 34.
    O’Shea, S., Gosvami, N., Lim, L., Hofbauer, W.: Liquid atomic force microscopy: solvation forces, molecular order, and squeeze-out, Japanese. J. Appl. Phys. 49, 08LA01 (2010)Google Scholar
  35. 35.
    Cihan, E., Ipek, S., Baykara, M.: Structural lubricity under ambient conditions. Nat. Commun. 7, 12055 (2016)CrossRefGoogle Scholar
  36. 36.
    Rentsch, R., Inasaki, I.: Effects of fluids on the surface generation in material removal processes—molecular dynamics simulation -. Ann. CIRP 55, 601604 (2006)CrossRefGoogle Scholar
  37. 37.
    Lautenschlaeger, M., Stephan, S., Urbassek, H., Kirsch, B., Aurich, J., Horsch, M., Hasse, H.: Effects of lubrication on the friction in nanometric machining processes: a molecular dynamics approach. Appl. Mech. Mater. 869, 85 (2017).  https://doi.org/10.4028/www.scientific.net/AMM.869.85 CrossRefGoogle Scholar
  38. 38.
    Lautenschlaeger, M., Stephan, S., Horsch, M., Kirsch, B., Aurich, J., Hasse, H.: Effects of lubrication on the friction and heat transfer in machining processes on the nanoscale: a molecular dynamics approach. Proc. CRIP 67, 296–301 (2014)CrossRefGoogle Scholar
  39. 39.
    Tartaglino, U., Sivebaek, I., Persson, B., Tosatti, E.: Impact of molecular structure on the lubrication squeeze-out between curved surfaces with long range elasticity. J. Chem. Phys. 125, 014704 (2006)CrossRefGoogle Scholar
  40. 40.
    Allen, M., Tildesley, D.: Computer Simulation of Liquids. Oxford University Press, New York (2009)Google Scholar
  41. 41.
    Hou, H., Zhang, Y., Li, Z., Jiang, T., Zhang, J., Xu, C.: Numerical analysis of entropy production on a lng cryogenic submerged pump. J. Nat. Gas Sci. Eng. 36, 87 (2016).  https://doi.org/10.1016/j.jngse.2016.10.017 CrossRefGoogle Scholar
  42. 42.
    Bahadori, A.: In: Mokhatab, S., Mak, J.Y., Valappil, J.V., Wood, D.A. (eds.) Handbook of Liquefied Natural Gas, pp. 147–183. Gulf Professional Publishing, Boston (2014).  https://doi.org/10.1016/B978-0-12-404585-9.00003-9 CrossRefGoogle Scholar
  43. 43.
    Bill, R.C., Wisander, D.: Recrystallization as a controlling process in the wear of some F.C.C. metals. Wear 41(2), 351 (1977).  https://doi.org/10.1016/0043-1648(77)90013-8 CrossRefGoogle Scholar
  44. 44.
    Wisander, D.W.: Friction and wear of selected metals and alloys in sliding contact with aisi 440c stainless steel in liquid methane and in liquid natural gas. NASA Tech. Rep. 1150, 1 (1978)Google Scholar
  45. 45.
    Kanda, T., Sato, M., Kimura, T., Asakawa, H.: Expander and coolant-bleed cycles of methane-fueled rocket engines. Trans. Jpn. Soc. Aeronaut. Space Sci. 61(3), 106 (2018).  https://doi.org/10.2322/tjsass.61.106 CrossRefGoogle Scholar
  46. 46.
    Collins, J., Hurlbert, E., Romig, K., Melcher, J., Hobson, A., Eaton, P.: Sea-level flight demonstration and altitude characterization of a LO2/LCH4 based ascent propulsion lander. In: 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference proceedings 45, 4948 (2009).  https://doi.org/10.2514/6.2009-4948
  47. 47.
    Cao, F., Deetz, J.D., Sun, H.: Free energy-based coarse-grained force field for binary mixtures of hydrocarbons, nitrogen, oxygen, and carbon dioxide. J. Inform. Model. 57(1), 50 (2017).  https://doi.org/10.1021/acs.jcim.6b00685. PMID: 28029243CrossRefGoogle Scholar
  48. 48.
    Brinksmeier, E., Aurich, J., Goveka, E., Heinzel, C., Hoffmeister, H., Klocke, F., Peters, J., Rentsch, R., Stephenson, D., Uhlmann, E., Weinert, K., Wittmann, M.: Advances in modeling and simulation of grinding processes. Ann. CIRP 55, 667 (2006)CrossRefGoogle Scholar
  49. 49.
    Yildiz, Y., Nalbant, M.: A review of cryogenic cooling in machining processes. Int. J. Mach. Tools Manuf. 48, 947 (2008).  https://doi.org/10.1016/j.ijmachtools.2008.01.008 CrossRefGoogle Scholar
  50. 50.
    Becker, S., Urbassek, H., Horsch, M., Hasse, H.: Contact angle of sessile drops in Lennard-Jones systems. Langmuir 30, 13606 (2014)CrossRefGoogle Scholar
  51. 51.
    Becker, S., Kohns, M., Urbassek, H.M., Horsch, M., Hasse, H.: Static and dynamic wetting behavior of drops on impregnated structured walls by molecular dynamics simulation. J. Physi. Chem. C 121(23), 12669 (2017).  https://doi.org/10.1021/acs.jpcc.6b12741 CrossRefGoogle Scholar
  52. 52.
    Berendsen, H.J.C., Postma, J.P.M., van Gunsteren, W.F., DiNola, A., Haak, J.R.: Molecular dynamics with coupling to an external bath. J. Chem. Phys. 81(8), 3684 (1984).  https://doi.org/10.1063/1.448118 CrossRefGoogle Scholar
  53. 53.
    Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83(35), 3977 (2003).  https://doi.org/10.1080/14786430310001613264 CrossRefGoogle Scholar
  54. 54.
    Vrabec, J., Kedia, G.K., Fuchs, G., Hasse, H.: Comprehensive study of the vapour-liquid coexistence of the truncated and shifted Lennard-Jones fluid including planar and spherical interface properties. Mol. Phys. 104, 1509 (2006)CrossRefGoogle Scholar
  55. 55.
    Banerjee, S., Naha, S., Puri, I.K.: Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Appl. Phys. Lett. 92(23), 233121 (2008).  https://doi.org/10.1063/1.2945798 CrossRefGoogle Scholar
  56. 56.
    Weeks, J.D., Chandler, D., Andersen, H.C.: Role of repulsive forces in determining the equilibrium structure of simple liquids. J. Chem. Phys. 54(12), 5237 (1971).  https://doi.org/10.1063/1.1674820 CrossRefGoogle Scholar
  57. 57.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1 (1995)CrossRefGoogle Scholar
  58. 58.
    Stukowski, A., Albe, K.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Modell. Simul. Mater. Sci. Eng. 18(8), 085001 (2010).  https://doi.org/10.1088/0965-0393/18/1/015012. http://www.ovito.org/ CrossRefGoogle Scholar
  59. 59.
    Henderson, A.: Paraview guide, a parallel visualization application. Kitware Inc. (2007). http://www.paraview.org
  60. 60.
    Childs, H., Brugger, E., Whitlock, B., Meredith, J., Ahern, S., Pugmire, D., Biagas, K., Miller, M., Harrison, C., Weber, G.H., Krishnan, H., Fogal, T., Sanderson, A., Garth, C., Bethel, E.W., Camp, D., Rübel, O., Durant, M., Favre, J.M., Navrátil, P.: In: High Performance Visualization–Enabling Extreme-Scale Scientific Insightm pp. 357–372 (2012)Google Scholar
  61. 61.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO-the open visualization tool. Modell. Simul. Mater. Sci. Eng. 18(1), 015012 (2010).  https://doi.org/10.1088/0965-0393/18/1/015012. http://www.ovito.org/ CrossRefGoogle Scholar
  62. 62.
    Edelsbrunner, H., Kirkpatrick, D., Seidel, R.: On the shape of a set of points in the plane. IEEE Trans. Inform. Theory 29(4), 551 (1983).  https://doi.org/10.1109/TIT.1983.1056714 CrossRefGoogle Scholar
  63. 63.
    Yong, X., Zhang, L.T.: Slip in nanoscale shear flow: mechanisms of interfacial friction. Microfluid. Nanofluid. 14(1–2), 299 (2013).  https://doi.org/10.1007/s10404-012-1048-x CrossRefGoogle Scholar
  64. 64.
    Thompson, P.A.: A general boundary condition for liquid flow at solid surfaces. Nature 389, 360 (1997)CrossRefGoogle Scholar
  65. 65.
    Bhushan, B., Israelachvili, J., Landman, U.: Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374, 607 (1995)CrossRefGoogle Scholar
  66. 66.
    Stoyanov, P., Merz, R., Romero, P., Whlisch, F.C., Abad, O.T., Gralla, R., Stemmer, P., Kopnarski, M., Moseler, M., Bennewitz, R., Dienwiebel, M.: Surface softening in metal–ceramic sliding contacts: an experimental and numerical investigation. Am. Chem. Soc Nano 9, 1478 (2015)Google Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  • S. Stephan
    • 1
  • M. P. Lautenschlaeger
    • 1
  • I. Alabd Alhafez
    • 2
  • M. T. Horsch
    • 1
  • H. M. Urbassek
    • 2
  • H. Hasse
    • 1
  1. 1.Laboratory of Engineering Thermodynamics (LTD)TU Kaiserslautern (TUK)KaiserslauternGermany
  2. 2.Physics Department and Research Center OPTIMASTU Kaiserslautern (TUK)KaiserslauternGermany

Personalised recommendations