Advertisement

Tribology Letters

, 66:121 | Cite as

Effect of Mechanochemically Functionalized Multilayer Graphene on the Tribological Properties of Silicon Carbide/Graphene Nanocomposites in Aqueous Environment

  • Wenli Zhang
  • Christian Schröder
  • Bernadette Schlüter
  • Martin Knoch
  • Ján Dusza
  • Richard Sedlák
  • Rolf Mülhaupt
  • Andreas Kailer
Original Paper
  • 259 Downloads

Abstract

Dry milling of graphite in a ball mill represents a versatile one-step mechanochemical process for fabricating mechanochemically functionalized multilayer graphene (MG) bearing different functional groups. The variation of the milling parameters enables to control particle size, shape, functionality, specific surface area, and dispersability of the MG functional fillers. In this study, MG was used as functional nanofiller for the production of SiC/MG nanocomposites. The nanocomposites exhibit significantly improved tribological behavior. The results of rotating pin on disc sliding tests show that with SiC/MG a noticeable improvement of friction and wear behavior under water-lubricated conditions like in slide bearings and face seals can be achieved. Sliding friction systems with the variant SiC + 2% MG–CO2-120 h appear to have the most promising tribological properties, due to the reduced size of the homogeneously distributed graphite particles, which promote the formation of advantageous surface states.

Keywords

Silicon carbide Graphene Nanocomposite Mechanochemistry Tribology 

Notes

Acknowledgements

The authors gratefully acknowledge the financial support from project ERA.NET-GRACE which is funded by the Federal Ministry of Education and Research (BMBF) under the funding code 03X0156.

References

  1. 1.
    Roewer, G., Herzog, U., Trommer, K., Müller, E., Frühauf, S.: Silicon Carbide—A Survey of Synthetic Approaches, Properties and Applications. In: High Performance Non-Oxide Ceramics I. Springer, Berlin (2002)Google Scholar
  2. 2.
    Schwetz, K.A.: Silicon Carbide Based Hard Materials. In: Handbook of Ceramic Hard Materials. Wiley, Weinheim (2008)Google Scholar
  3. 3.
    Friedrichs, P.: Silicon Carbide. Wiley-VCH, Weinheim (2010)Google Scholar
  4. 4.
    Porwal, H., Grasso, S., Reece, M.J.: Review of graphene–ceramic matrix composites. Adv. Appl. Ceram. 8, 443–454 (2013)CrossRefGoogle Scholar
  5. 5.
    Ciudad, E., Sánchez-González, E., Borrero-López, O., Guiberteau, F., Nygren, M., Ortiz, A.L.: Sliding-wear resistance of ultrafine-grained SiC densified by spark plasma sintering with 3Y2O3 + 5Al2O3 or Y3Al5O12 additives. Scr. Mater. 8, 598–601 (2013)CrossRefGoogle Scholar
  6. 6.
    Borrero-López, O., Ortiz, A.L., Guiberteau, F., Padture, N.P.: Microstructural design of sliding-wear-resistant liquid-phase-sintered SiC: an overview. J. Eur. Ceram. Soc. 11, 3351–3357 (2007)CrossRefGoogle Scholar
  7. 7.
    Geim, A.K., Novoselov, K.S.: The rise of graphene. Nat. Mater. 3, 183–191 (2007)CrossRefGoogle Scholar
  8. 8.
    Gomez De Arco, L., Zhang, Y., Schlenker, C.W., Ryu, K., Thompson, M.E., Zhou, C.: Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano. 5, 2865–2873 (2010)CrossRefGoogle Scholar
  9. 9.
    Wang, X., You, H., Liu, F., Li, M., Wan, L., Li, S., Li, Q., Xu, Y., Tian, R., Yu, Z., Xiang, D., Cheng, J.: Large-scale synthesis of few-layered graphene using CVD. Chem. Vap. Depos. 1–3, 53–56 (2009)CrossRefGoogle Scholar
  10. 10.
    Tölle, F.J., Fabritius, M., Mülhaupt, R.: Emulsifier-free graphene dispersions with high graphene content for printed electronics and freestanding graphene films. Adv. Funct. Mater. 6, 1136–1144 (2012)CrossRefGoogle Scholar
  11. 11.
    Aguilar-Bolados, H., Lopez-Manchado, M.A., Brasero, J., Avilés, F., Yazdani-Pedram, M.: Effect of the morphology of thermally reduced graphite oxide on the mechanical and electrical properties of natural rubber nanocomposites. Composites Part B 87, 350–356 (2016)CrossRefGoogle Scholar
  12. 12.
    Zhan, D., Ni, Z., Chen, W., Sun, L., Luo, Z., Lai, L., Yu, T., Wee, A.T.S., Shen, Z.: Electronic structure of graphite oxide and thermally reduced graphite oxide. Carbon 4, 1362–1366 (2011)CrossRefGoogle Scholar
  13. 13.
    Mauro, M., Cipolletti, V., Galimberti, M., Longo, P., Guerra, G.: Chemically reduced graphite oxide with improved shape anisotropy. J. Phys. Chem. C 46, 24809–24813 (2012)CrossRefGoogle Scholar
  14. 14.
    Wei, G., Yu, J., Gu, M., Ai, X., Xu, X., Tang, T.B.: Dielectric relaxation characteristics of chemically reduced graphite oxide. Carbon, 95, 374–379 (2015)CrossRefGoogle Scholar
  15. 15.
    Hummers, W.S., Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 6, 1339 (1958)CrossRefGoogle Scholar
  16. 16.
    Jeon, I.-Y., Choi, H.-J., Ju, M.J., Choi, I.T., Lim, K., Ko, J., Kim, H.K., Kim, J.C., Lee, J.-J., Shin, D., Jung, S.-M., Seo, J.-M., Kim, M.-J., Park, N., Dai, L., Baek, J.-B.: Direct nitrogen fixation at the edges of graphene nanoplatelets as efficient electrocatalysts for energy conversion. Sci. Rep. 3, 2260 (2013)CrossRefGoogle Scholar
  17. 17.
    Jeon, I.-Y., Shin, Y.-R., Sohn, G.-J., Choi, H.-J., Bae, S.-Y., Mahmood, J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Wook Chang, D., Dai, L., Baek, J.-B.: Edge-carboxylated graphene nanosheets via ball milling. PNAS 15, 5588–5593 (2012)CrossRefGoogle Scholar
  18. 18.
    Jeon, I.-Y., Choi, H.-J., Jung, S.-M., Seo, J.-M., Kim, M.-J., Dai, L., Baek, J.-B.: Large-scale production of edge-Selectively functionalized graphene nanoplatelets via ball milling and their use as metal-free electrocatalysts for oxygen reduction reaction. J. Am. Chem. Soc. 4, 1386–1393 (2013)CrossRefGoogle Scholar
  19. 19.
    Appel, A.-K., Thomann, R., Mülhaupt, R.: Polyurethane nanocomposites prepared from solvent-free stable dispersions of functionalized graphene nanosheets in polyols. Polymer 22, 4931–4939 (2012)CrossRefGoogle Scholar
  20. 20.
    Beckert, F., Bodendorfer, S., Zhang, W., Thomann, R., Mülhaupt, R.: Mechanochemical route to graphene-supported iron catalysts for olefin polymerization and in situ formation of carbon/polyolefin nanocomposites. Macromolecules 20, 7036–7042 (2014)CrossRefGoogle Scholar
  21. 21.
    Steurer, P., Wissert, R., Thomann, R., Mülhaupt, R.: Functionalized graphenes and thermoplastic nanocomposites based upon expanded graphite oxide. Macromol. Rapid Commun. 4–5, 316–327 (2009)CrossRefGoogle Scholar
  22. 22.
    Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T., Ruoff, R.S.: Graphene-based composite materials. Nature 7100, 282–286 (2006)CrossRefGoogle Scholar
  23. 23.
    Huang, X., Qi, X., Boey, F., Zhang, H.: Graphene-based composites. Chem. Soc. Rev. 2, 666–686 (2012)CrossRefGoogle Scholar
  24. 24.
    Markandan, K., Chin, J.K., Tan, M.T.: Recent progress in graphene based ceramic composites: a review. J. Mater. Res. 1, 84–106 (2017)CrossRefGoogle Scholar
  25. 25.
    Nieto, A., Bisht, A., Lahiri, D., Zhang, C., Agarwal, A.: Graphene reinforced metal and ceramic matrix composites: a review. Int. Mater. Rev. 5, 241–302 (2017)CrossRefGoogle Scholar
  26. 26.
    Miranzo, P., Belmonte, M., Osendi, M., Isabel: From bulk to cellular structures: a review on ceramic/graphene filler composites. J. Eur. Ceram. Soc. 12, 3649–3672 (2017)CrossRefGoogle Scholar
  27. 27.
    Kvetková, L., Duszová, A., Hvizdoš, P., Dusza, J., Kun, P., Balázsi, C.: Fracture toughness and toughening mechanisms in graphene platelet reinforced Si3N4 composites. Scr. Mater. 10, 793–796 (2012)CrossRefGoogle Scholar
  28. 28.
    Román-Manso, B., Domingues, E., Figueiredo, F.M., Belmonte, M., Miranzo, P.: Enhanced electrical conductivity of silicon carbide ceramics by addition of graphene nanoplatelets. J. Eur. Ceram. Soc. 10, 2723 (2015)CrossRefGoogle Scholar
  29. 29.
    Amann, T., Kailer, A., Herrmann, M.: Influence of electrochemical potentials on the tribological behavior of silicon carbide and diamond-coated silicon carbide. J. Bio- Tribo-Corros. 4, 30 (2015)CrossRefGoogle Scholar
  30. 30.
    Sedlák, R., Kovalčíková, A., Balko, J., Rutkowski, P., Dubiel, A., Zientara, D., Girman, V., Múdra, E., Dusza, J.: Effect of graphene platelets on tribological properties of boron carbide ceramic composites. Int. J. Refract. Met. Hard Mater. 65, 57–63 (2017)CrossRefGoogle Scholar
  31. 31.
    Porwal, H., Tatarko, P., Saggar, R., Grasso, S., Kumar Mani, M., Dlouhý, I., Dusza, J., Reece, M.J.: Tribological properties of silica–graphene nano-platelet composites. Ceram. Int. 8, 12067–12074 (2014)CrossRefGoogle Scholar
  32. 32.
    Miranzo, P., García, E., Ramírez, C., González-Julián, J., Belmonte, M., Osendi, M.I.: Anisotropic thermal conductivity of silicon nitride ceramics containing carbon nanostructures. J. Eur. Ceram. Soc. 8, 1847 (2012)CrossRefGoogle Scholar
  33. 33.
    Balázsi, C., Fogarassy, Z., Tapasztó, O., Kailer, A., Schröder, C., Parchoviansky, M., Galusek, D., Dusza, J., Balázsi, K.: Si3N4/graphene nanocomposites for tribological application in aqueous environments prepared by attritor milling and hot pressing. J. Eur. Ceram. Soc. 12, 3797–3804 (2017)CrossRefGoogle Scholar
  34. 34.
    Llorente, J., Román-Manso, B., Miranzo, P., Belmonte, M.: Tribological performance under dry sliding conditions of graphene/silicon carbide composites. J. Eur. Ceram. Soc. (2016).  https://doi.org/10.1016/j.jeurceramsoc.2015.09.040 CrossRefGoogle Scholar
  35. 35.
    Llorente, J., Belmonte, M.: Friction and wear behaviour of silicon carbide/graphene composites under isooctane lubrication. J. Eur. Ceram. Soc. 10, 3441–3446 (2018)CrossRefGoogle Scholar
  36. 36.
    Maros, B., Németh, M., Károly, A.K., Bódis, Z., Maros, E., Tapasztó, Z., Balázsi, K.O.: Tribological characterisation of silicon nitride/multilayer graphene nanocomposites produced by HIP and SPS technology. Tribol. Int. 93, 269–281 (2016)CrossRefGoogle Scholar
  37. 37.
    Hvizdoš, P., Dusza, J., Balázsi, C.: Tribological properties of Si3N4–graphene nanocomposites. J. Eur. Ceram. Soc. 12, 2359–2364 (2013)CrossRefGoogle Scholar
  38. 38.
    Beckert, F., Trenkle, S., Thomann, R., Mülhaupt, R.: Mechanochemical route to functionalized graphene and carbon nanofillers for graphene/SBR nanocomposites. Macromol. Mater. Eng. 12, 1513–1520 (2014)CrossRefGoogle Scholar
  39. 39.
    Tschoppe, K., Beckert, F., Beckert, M., Mülhaupt, R.: Thermally reduced graphite oxide and mechanochemically functionalized graphene as functional fillers for epoxy nanocomposites. Macromol. Mater. Eng. 2, 140–152 (2015)CrossRefGoogle Scholar
  40. 40.
    Pereira, dosS., Tonello, K., Padovano, E., Badini, C., Biamino, S., Pavese, M., Fino, P.: Fabrication and characterization of laminated SiC composites reinforced with graphene nanoplatelets. Mater. Sci. Eng. A 659, 158–164 (2016)CrossRefGoogle Scholar
  41. 41.
    Munro, R.G.: Material properties of a sintered α-SiC. J. Phys. Chem. Ref. Data 5, 1195–1203 (1997)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Freiburg Materials Research Center (FMF) and Institute for Macromolecular Chemistry of the University of FreiburgFreiburgGermany
  2. 2.Fraunhofer Institute for Mechanics of Materials IWMFreiburgGermany
  3. 3.FCT Ingenieurkeramik GmbHFrankenblickGermany
  4. 4.Division of Ceramic and Non-Metallic Systems, Institute of Materials ResearchSlovak Academy of SciencesKošiceSlovakia

Personalised recommendations