Tribology Letters

, 66:117 | Cite as

Multi-Gaussian Stratified Modeling and Characterization of Multi-process Surfaces

  • Songtao Hu
  • Weifeng Huang
  • Xi ShiEmail author
  • Zhike Peng
  • Xiangfeng Liu
  • Yuming Wang
Original Paper


Surface serves as the fingerprint of a component. Most researchers understood surface topography from a single-stratum viewpoint, some ones have focused on a bi-Gaussian stratified model that respects formation mechanism, but few studies have considered a multi-Gaussian stratified possibility. A multi-Gaussian stratified model of surface topography is developed based on the existing bi-Gaussian stratified surface theory. The bi-Gaussian characterizing method, on the basis of linear regression, is revised to differentiate the mixed multiple Gaussian components. The model and the method are demonstrated on simulated multi-Gaussian stratified surfaces and real engineering surfaces manufactured by turning, rough lapping, and fine lapping. The results reveal the existence of multi-Gaussian stratified feature on multi-process surfaces in industry, and improve the stratified surface theory.


Surface topography Stratified Characterization Simulation 



This work was supported by the China Postdoctoral Science Foundation (Grant No. 2017M621458), the National Natural Science Foundation of China (Grant No. 11572192), the National Natural Science Foundation of China (Grant No. 11632011), and the National Science and Technology Support Plan Project (Grant No. 2015BAA08B02).


  1. 1.
    Whitehouse, D.J.: Surfaces—a link between manufacture and function. Proc. IMechE. 192, 179–188 (1978)CrossRefGoogle Scholar
  2. 2.
    Lawrence, K.D., Ramamoorthy, B.: Multi-Surface topography targeted plateau honing for the processing of cylinder liner surfaces of automotive engines. Appl. Surf. Sci. 365, 19–30 (2016)CrossRefGoogle Scholar
  3. 3.
    Kumar, R., Kumar, S., Prakash, B., et al.: Assessment of engine liner wear from bearing area curves. Wear 239, 282–286 (2000)CrossRefGoogle Scholar
  4. 4.
    Touche, T., Cayer-Barrioz, J., Mazuyer, D.: Friction of textured surfaces in EHL and mixed lubrication: effect of the groove topography. Tribol. Lett. 63(2), 1–14 (2016)CrossRefGoogle Scholar
  5. 5.
    Liewald, M., Wagner, S., Becker, D.: Influence of surface topography on the tribological behaviour of aluminium alloy 5182 with EDT surface. Tribol. Lett. 39(2), 135–142 (2010)CrossRefGoogle Scholar
  6. 6.
    Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Stratified revised asperity contact model for worn surfaces. J. Tribol. 139, 021403 (2017)CrossRefGoogle Scholar
  7. 7.
    Lou, S., Jiang, X., Bills, P.J., Scott, P.J.: Defining true tribological contact through application of the morphological method to surface topography. Tribol. Lett. 50(2), 185–193 (2013)CrossRefGoogle Scholar
  8. 8.
    Whitehouse, D.J.: Assessment of surface finish profiles produced by multi-process manufacture. Proc. IMechE. B. 199, 263–270 (1985)CrossRefGoogle Scholar
  9. 9.
    Malburg, M.C., Raja, J., Whitehouse, D.J.: Characterization of surface texture generated by plateau honing process. CIRP Ann. 42, 637–639 (1993)CrossRefGoogle Scholar
  10. 10.
    Sannareddy, H., Raja, J., Chen, K.: Characterization of surface texture generated by multi-process manufacture. Int. J. Mach. Tools Manufact. 38, 529–536 (1998)CrossRefGoogle Scholar
  11. 11.
    Leefe, S.E.: “Bi-Gaussian” representation of worn surface topography in elastic contact problems. Tribol. Ser. 34, 281–290 (1998)CrossRefGoogle Scholar
  12. 12.
    Pawlus, P., Grabon, W.: The method of truncation parameters measurement from material ratio curve. Precis. Eng. 32, 342–347 (2008)CrossRefGoogle Scholar
  13. 13.
    Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Continuous separating method for characterizing and reconstructing bi-Gaussian stratified surfaces. Tribol. Int. 102, 454–462 (2016)CrossRefGoogle Scholar
  14. 14.
    Hu, S., Huang, W., Brunetiere, N., Liu, X., Wang, Y.: Truncated separation method for characterizing and reconstructing bi-Gaussian stratified surfaces. Friction 5(1), 32–44 (2017)CrossRefGoogle Scholar
  15. 15.
    Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Bi-Gaussian surface identification and reconstruction with revised autocorrelation functions. Tribol. Int. 110, 185–194 (2017)CrossRefGoogle Scholar
  16. 16.
    Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Evolution of bi-Gaussian surface parameters of silicon-carbide and carbon-graphite discs in a dry sliding wear process. Tribol. Int. 112, 75–85 (2017)CrossRefGoogle Scholar
  17. 17.
    Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: The bi-Gaussian theory to understand sliding wear and friction. Tribol. Int. 114, 186–191 (2017)CrossRefGoogle Scholar
  18. 18.
    Williamson, J.P.B.: Microtopography of surfaces. Proc. IMechE. 182, 21–30 (1967)CrossRefGoogle Scholar
  19. 19.
    ISO 13565-3: Surface Texture: Profile Method; Surfaces having stratified functional properties—Part 3: Height characterization using the material probability curve. ISO, Geneva (1998)Google Scholar
  20. 20.
    Grabon, W., Pawlus, P., Sep, J.: Tribological characteristics of one-process and two-process cylinder liner honed surfaces under reciprocating sliding conditions. Tribol. Int. 43, 1882–1892 (2010)CrossRefGoogle Scholar
  21. 21.
    Pawlus, P., Michalczewski, R., Lenart, A., Dzierwa, A.: The effect of random surface topography height on fretting in dry gross slip conditions. Proc. IMechE. J. 228, 1374–1391 (2014)CrossRefGoogle Scholar
  22. 22.
    Dzierwa, A., Pawlus, P., Zelasko, W.: Comparison of tribological behaviors of one-process and two-process steel surfaces in ball-on-disc tests. Proc. IMechE J. 228, 1195–1210 (2014)CrossRefGoogle Scholar
  23. 23.
    Grabon, W., Pawlus, P., Wos, S., Koszela, W., Wieczorowski, M.: Effects of honed cylinder liner surface texture on tribological properties of piston ring-liner assembly in short time tests. Tribol. Int. 113, 137–148 (2017)CrossRefGoogle Scholar
  24. 24.
    Hu, S., Brunetiere, N., Huang, W., Liu, X., Wang, Y.: Stratified effect of continuous bi-Gaussian rough surface on lubrication and asperity contact. Tribol. Int. 104, 328–341 (2016)CrossRefGoogle Scholar
  25. 25.
    Zelasko, W., Pawlus, P., Dzierwa, A., Prucnal, S.: Experimental investigation of plastic contact between a rough steel surface and a flat sintered carbide surface. Tribol. Int. 100, 141–151 (2016)CrossRefGoogle Scholar
  26. 26.
    Pawlus, P., Zelasko, W., Reizer, R., Wieczorowski, M.: Calculation of plasticity index of two-process surfaces. Proc. IMechE J. 231, 572–582 (2017)CrossRefGoogle Scholar
  27. 27.
    Hu, S., Huang, W., Shi, X., Peng, Z., Liu, X., Wang, Y.: Bi-Gaussian stratified effect of rough surfaces on acoustic emission under a dry sliding friction. Tribol. Int. 119, 308–315 (2018)CrossRefGoogle Scholar
  28. 28.
    Pawlus, P.: Simulation of stratified surface topographies. Wear 264, 457–463 (2008)CrossRefGoogle Scholar
  29. 29.
    Podsiadlo, P., Wolski, M., Stachowiak, G.W.: Fractal analysis of surface topography by the directional blanket covering method. Tribol. Lett. 59(3), 41 (2015)CrossRefGoogle Scholar
  30. 30.
    Lawrence, K.D., Ramamoorthy, B.: Surface topography characterization of automotive cylinder liner surfaces using fractal methods. Appl. Surf. Sci. 280, 332–342 (2013)CrossRefGoogle Scholar
  31. 31.
    Patir, N.: A numerical procedure for random generation of rough surfaces. Wear 47, 263–277 (1978)CrossRefGoogle Scholar
  32. 32.
    Bakolas, V.: Numerical generation of arbitrarily oriented non-Gaussian three-dimensional rough surfaces. Wear 254, 46–554 (2004)Google Scholar
  33. 33.
    Hu, Y., Tonder, K.: Simulation of 3-D random rough surface by 2-D digital filter and Fourier analysis. Int. J. Mach. Tools Manufact. 32, 83–90 (1992)CrossRefGoogle Scholar
  34. 34.
    Wu, J.: Simulation of rough surfaces with FFT. Tribol. Int. 33, 47–58 (2000)CrossRefGoogle Scholar
  35. 35.
    Wu, J.: Simulation of non-Gaussian surfaces with FFT. Tribol. Int. 37, 339–346 (2004)CrossRefGoogle Scholar
  36. 36.
    Corral, I.B., Calvet, J.V., Salcedo, M.C.: Use of roughness probability parameters to quantify the material removed in plateau-honing. Int. J. Mach. Tools Manufact. 50, 621–629 (2010)CrossRefGoogle Scholar
  37. 37.
    Hu, S., Huang, W., Liu, X., Wang, Y.: Probe model of wear degree under sliding wear by Rk parameter set. Tribol. Int. 109, 578–585 (2017)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.State Key Laboratory of Mechanical System and VibrationShanghai Jiao Tong UniversityShanghaiChina
  2. 2.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations