Tribology Letters

, 66:102 | Cite as

Thixotropic Mechanics in Soft Hydrated Sliding Interfaces

  • Jiho Kim
  • Alison C. Dunn
Original Paper


Soft hydrated permeable surfaces exhibit unique lubrication behaviors, including recently discovered frictional hysteresis. This duration-dependent frictional effect can be analogous to the thixotropic fluid response under shear-driven Couette flow. We illustrate torque-speed hysteresis loops using tribo-rheometry measurements between an aluminum annulus and polyacrylamide surface. Frictional torque response was measured under stepwise sliding speed increments at five different step durations. The torque-sliding speed curves exhibit hysteresis loops and the shape of the hysteresis loops depends on step durations. Longer duration shows greater hysteresis with higher average friction. Torque curves at highest speeds converge to one line with a power law exponent of α = 0.7. Based on the experimental data, a hydrogel lubrication model was developed using a thixotropic fluid model, where viscosity change is described as a competition between structural buildup and breakdown. Simulation using the model correlates well with the experimental results, indicating the existence of effective structural change on the hydrogel surface.


Thixotropy Complex fluid simulation Hydrogel lubrication Tribo-rheology 



This work was supported in part by NSF Award Number 1563087. The authors are grateful for helpful conversations and resources from Randy Ewoldt, Jonathon Schuh, and Anthony Margotta.


  1. 1.
    Urueña, J.M., Pitenis, A.A., Nixon, R.M., Schulze, K.D., Angelini, T.E., Sawyer, G.W: Mesh size control of polymer fluctuation lubrication in gemini hydrogels. Biotribology. 12, 24–29 (2015). CrossRefGoogle Scholar
  2. 2.
    Reale, E.R., Dunn, A.C.: Poroelasticity-driven lubrication in hydrogel interfaces. Soft Matter. 13, 428–435 (2017). CrossRefGoogle Scholar
  3. 3.
    McGhee, E.O., Pitenis, A.A., Urueña, J.M., Schulze, K.D., McGhee, A.J., O’Bryan, C.S., Bhattacharjee, T., Angelini, T.E., Sawyer, G.W: In situ measurements of contact dynamics in speed-dependent hydrogel friction. Biotribology. 13, 23–29 (2017). CrossRefGoogle Scholar
  4. 4.
    Kim, J., Dunn, A.C.: Soft hydrated sliding interfaces as complex fluids. Soft Matter. 12, 6536–6546 (2016). CrossRefGoogle Scholar
  5. 5.
    Gong, J.P.: Friction and lubrication of hydrogels? its richness and complexity. Soft Matter. 2, 544 (2006). CrossRefGoogle Scholar
  6. 6.
    Dunn, A.C., Sawyer, W.G., Angelini, T.E.: Gemini interfaces in aqueous lubrication with hydrogels. Tribol. Lett. 54, 59–66 (2014). CrossRefGoogle Scholar
  7. 7.
    Sudre, G., Hourdet, D., Cousin, F., Creton, C., Tran, Y.: Structure of surfaces and interfaces of poly(N,N-dimethylacrylamide) hydrogels. Langmuir. 28, 12282–12287 (2012). CrossRefGoogle Scholar
  8. 8.
    Denisin, A.K., Pruitt, B.L.: Tuning the range of polyacrylamide gel stiffness for mechanobiology applications. ACS Appl. Mater. Interfaces 8, 21893–21902 (2016). CrossRefGoogle Scholar
  9. 9.
    Chen, L.B., Zukoski, C.F., Ackerson, B.J., Hanley, H.J.M., Straty, G.C., Barker, J., Glinka, C.J.: Structural changes and orientational order in a sheared colloidal suspension. Phys. Rev. Lett. 69, 688–693 (1992). CrossRefGoogle Scholar
  10. 10.
    Perret, D., Locat, J., Martignoni, P.: Thixotropic behavior during shear of a fine-grained mud from Eastern Canada. Eng. Geol. 43, 31–44 (1996). CrossRefGoogle Scholar
  11. 11.
    Divoux, T., Grenard, V., Manneville, S.: Rheological hysteresis in soft glassy materials. Phys. Rev. Lett. 110, 018304 (2013). CrossRefGoogle Scholar
  12. 12.
    Barnes, H.H.A., Barnes, A.: Thixotropy—a review. J. Non-Newtonian Fluid Mech. 70, 1–33 (1997). CrossRefGoogle Scholar
  13. 13.
    Mewis, J., Wagner, N.J.: Thixotropy. Adv. Colloid Interface Sci. 147–148, 214–227 (2009). CrossRefGoogle Scholar
  14. 14.
    Wei, Y., Solomon, M.J., Larson, R.G.: Quantitative nonlinear thixotropic model with stretched exponential response in transient shear flows. J. Rheol. 60, 1301–1315 (2016). CrossRefGoogle Scholar
  15. 15.
    Toorman, E.A.: Modelling the thixotropic behaviour of dense cohesive sediment suspensions. Rheol. Acta. 36, 56–65 (1997). CrossRefGoogle Scholar
  16. 16.
    Sestak, J., Zitny, R., Houska, M.: Simple rheological models of food liquids for process design and quality assessment. J. Food Eng. 2, 35–49 (1983). CrossRefGoogle Scholar
  17. 17.
    Pitenis, A.A., Urueña, J.M., Schulze, K.D., Nixon, R.M., Dunn, A.C., Krick, B.A., Sawyer, W.G., Angelini, T.E.: Polymer fluctuation lubrication in hydrogel gemini interfaces. Soft Matter. 10, 8955–8962 (2014). CrossRefGoogle Scholar
  18. 18.
    Kii, A., Xu, J., Gong, J.P., Osada, Y., Zhang, X.: Heterogeneous polymerization of hydrogels on hydrophobic substrates. J. Phys. Chem. B. 105, 4565–4571 (2001). CrossRefGoogle Scholar
  19. 19.
    Kurokawa, T., Gong, J.P., Osada, Y.: Substrate effect on topographical, elastic, and frictional properties of hydrogels. Macromolecules. 35, 8161–8166 (2002). CrossRefGoogle Scholar
  20. 20.
    Moore, A.C., Burris, D.L.: Tribological rehydration of cartilage and its potential role in preserving joint health. Osteoarthr. Cartil. 25, 99–107 (2017). CrossRefGoogle Scholar
  21. 21.
    Zhang, J., Daubert, C.R., Foegeding, E.A.: Characterization of polyacrylamide gels as an elastic model for food gels. Rheol. Acta. 44, 622–630 (2005). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Mechanical Science and EngineeringUniversity of Illinois at Urbana-ChampaignUrbanaUSA

Personalised recommendations