Advertisement

Tribology Letters

, 66:89 | Cite as

Influence of Surface Design on the Solid Lubricity of Carbon Nanotubes-Coated Steel Surfaces

  • C. Schäfer
  • L. Reinert
  • T. MacLucas
  • P. Grützmacher
  • R. Merz
  • F. Mücklich
  • S. Suarez
Original Paper
  • 180 Downloads

Abstract

Topographically designed surfaces are able to store solid lubricants, preventing their removal out of the tribological contact and thus significantly prolonging the lubrication lifetime of a surface. The present study provides a systematic evaluation of the influence of surface structure design on the solid lubrication effect of multi-walled carbon nanotubes (MWCNT) coated steel surfaces. For this purpose, direct laser writing using a femtosecond pulsed laser system is deployed to create surface structures, which are subsequently coated with MWCNT by electrophoretic deposition. The structural depth or aspect ratio of the structures and thus the lubricant storage volume of the solid lubricant is varied. The frictional behavior of the surfaces is recorded using a ball-on-disk tribometer and the surfaces are thoroughly characterized by complementary characterization techniques. Efficient lubrication is achieved for all MWCNT-coated surfaces. However, and in contrast to what would be expected, it is shown that deeper structures with larger lubricant storage volume do not lead to an extended lubrication lifetime and behave almost equally to the coated unstructured surfaces. This can be attributed, among other things, to differences in the final surface roughness of the structures and the slope steepness of the structures, which prevent efficient lubricant supply into the contact.

Keywords

Solid lubrication Laser structuring Carbon nanotubes Coatings Surface modification 

Notes

Acknowledgements

The present work is supported by funding from the Deutsche Forschungsgemeinschaft (DFG, project: MU 959/38-1 and SU 911/1-1). The authors wish to acknowledge the EFRE Funds of the European Commission for support of activities within the AME-Lab project. This work was supported by the CREATe-Network Project, Horizon 2020 of the European Commission (RISE Project No. 644013). We thank Prof. Volker Presser (INM, Saarbrücken) for providing access to the Raman spectrometer and SFB 926 "Microscale Morphology of Component Surfaces" CRC 926 for measurements by Auger electron spectroscopy.

References

  1. 1.
    Etsion, I.: State of the art in laser surface texturing. J. Tribol. 127, 248 (2005).  https://doi.org/10.1115/1.1828070 CrossRefGoogle Scholar
  2. 2.
    Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., et al.: Dry friction between laser-patterned surfaces: Role of alignment, structural wavelength and surface chemistry. Tribol. Lett. 49, 193–202 (2013).  https://doi.org/10.1007/s11249-012-0057-y CrossRefGoogle Scholar
  3. 3.
    Rosenkranz, A., Reinert, L., Gachot, C., Mücklich, F.: Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear. 318, 49–61 (2014).  https://doi.org/10.1016/j.wear.2014.06.016 CrossRefGoogle Scholar
  4. 4.
    Szurdak, A., Rosenkranz, A., Gachot, C., Hirt, G., Mücklich, F.: Manufacturing and tribological investigation of hot micro-coined lubrication pockets. Key Eng. Mater. 611–612, 417–424 (2014).  https://doi.org/10.4028/www.scientific.net/KEM.611-612.417 CrossRefGoogle Scholar
  5. 5.
    Koszela, W., Pawlus, P., Galda, L.: The effect of oil pockets size and distribution on wear in lubricated sliding. Wear. 263, 1585–1592 (2007).  https://doi.org/10.1016/j.wear.2007.01.108 CrossRefGoogle Scholar
  6. 6.
    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36, 857–864 (2003).  https://doi.org/10.1016/S0301-679X(03)00104-X CrossRefGoogle Scholar
  7. 7.
    Pawlus, P.: Effects of honed cylinder surface topography on the wear of piston-piston ring-cylinder assemblies under artificially increased dustiness conditions. Tribol. Int. 26, 49–55 (1993).  https://doi.org/10.1016/0301-679X(93)90038-3 CrossRefGoogle Scholar
  8. 8.
    Lasagni, A., Roch, T., Bieda, M., Benke, D., Beyer, E.: High speed surface functionalization using direct laser interference patterning, towards 1 m 2 /min fabrication speed with sub-µm resolution. Proc. SPIE. 8968, 89680A (2014).  https://doi.org/10.1117/12.2041215 CrossRefGoogle Scholar
  9. 9.
    Mücklich, F., Lasagni, A., Daniel, C.: Laser Interference Metallurgy – using interference as a tool for micro/nano structuring. Zeitschrift. Für. Met. 97, 1337–1344 (2006)Google Scholar
  10. 10.
    Rosenkranz, A., Heib, T., Gachot, C., Mücklich, F.: Oil film lifetime and wear particle analysis of laser-patterned stainless steel surfaces. Wear. 334–335, 1–12 (2015).  https://doi.org/10.1016/j.wear.2015.04.006 CrossRefGoogle Scholar
  11. 11.
    Rosenkranz, A., Krupp, F., Reinert, L., Mücklich, F., Sauer, B.: Tribological performance of laser-patterned chain links—Influence of pattern geometry and periodicity. Wear. 370–371, 51–58 (2017).  https://doi.org/10.1016/j.wear.2016.11.006 CrossRefGoogle Scholar
  12. 12.
    Grützmacher, P.G., Rosenkranz, A., Gachot, C.: How to guide lubricants—tailored laser surface patterns on stainless steel. Appl. Surf. Sci. 370, 59–66 (2016).  https://doi.org/10.1016/j.apsusc.2016.02.115 CrossRefGoogle Scholar
  13. 13.
    Rapoport, L., Moshkovich, A., Perfilyev, V., Lapsker, I., Halperin, G., Itovich, Y., et al.: Friction and wear of MoS2 films on laser textured steel surfaces. Surf. Coatings Technol. 202, 3332–3340 (2008)CrossRefGoogle Scholar
  14. 14.
    Cho, M.H., Ju, J., Kim, S.J., Jang, H.: Tribological properties of solid lubricants (graphite, Sb2S3, MoS2) for automotive brake friction materials. Wear. 260, 855–860 (2006).  https://doi.org/10.1016/j.wear.2005.04.003 CrossRefGoogle Scholar
  15. 15.
    Scharf, T.W., Prasad, S.V.: Solid lubricants: A review. J. Mater. Sci. 48, 511–531 (2013).  https://doi.org/10.1007/s10853-012-7038-2 CrossRefGoogle Scholar
  16. 16.
    Zhai, W., Srikanth, N., Kong, L.B., Zhou, K.: Carbon nanomaterials in tribology. Carbon N Y. 119, 150–171 (2017).  https://doi.org/10.1016/j.carbon.2017.04.027 CrossRefGoogle Scholar
  17. 17.
    Chen, W., Tu, J., Wang, L., Gan, H., Xu, Z.: Tribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon N Y 41, 215–222 (2003)CrossRefGoogle Scholar
  18. 18.
    Kim, K.T., Cha, S., Hong, S.H.: Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A. 449–451, 46–50 (2007).  https://doi.org/10.1016/j.msea.2006.02.310 CrossRefGoogle Scholar
  19. 19.
    Scharf, T., Neira, A., Hwang, J.Y., Tiley, J., Banerjee, R.: Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys. 106, 13508 (2009).  https://doi.org/10.1063/1.3158360 CrossRefGoogle Scholar
  20. 20.
    Tan, J., Yu, T., Xu, B., Yao, Q.: Microstructure and wear resistance of nickel–carbon nanotube composite coating from brush plating technique. Tribol. Lett. 21, 107–111 (2006).  https://doi.org/10.1007/s11249-006-9025-8 CrossRefGoogle Scholar
  21. 21.
    Suárez, S., Rosenkranz, A., Gachot, C., Mücklich, F.: Enhanced tribological properties of MWCNT/Ni bulk composites - Influence of processing on friction and wear behaviour. Carbon N Y. 66, 164–171 (2014).  https://doi.org/10.1016/j.carbon.2013.08.054 CrossRefGoogle Scholar
  22. 22.
    Reinert, L., Suárez, S., Rosenkranz, A.: Tribo-Mechanisms of carbon nanotubes: friction and wear behavior of CNT-reinforced nickel matrix composites and cnt-coated bulk nickel. Lubricants. 4, 1–15 (2016).  https://doi.org/10.3390/lubricants4020011 CrossRefGoogle Scholar
  23. 23.
    Miyoshi, K., Street, K.W., Vander Wal, R.L., Andrews, R., Sayir, A.: Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 19, 191–201 (2005).  https://doi.org/10.1007/s11249-005-6146-4 CrossRefGoogle Scholar
  24. 24.
    Hirata, A., Yoshioka, N.: Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribol. Int. 37, 893–898 (2004)CrossRefGoogle Scholar
  25. 25.
    Hu, J.J., Jo, S.H., Ren, Z.F., Voevodin, A.A., Zabinski, J.S.: Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel. Tribol. Lett. 19, 119–125 (2005).  https://doi.org/10.1007/s11249-005-5091-6 CrossRefGoogle Scholar
  26. 26.
    Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, A.A., Ajayan, P.M., et al.: Tunable friction behavior of oriented carbon nanotube films. Tribol. Lett. 24, 85–90 (2006).  https://doi.org/10.1007/s11249-006-9162-0 CrossRefGoogle Scholar
  27. 27.
    Reinert, L., Schütz, S., Suárez, S., Mücklich, F.: Influence of surface roughness on the lubrication effect of carbon nanoparticle-coated steel surfaces. Tribol. Lett. 66, 45 (2018).  https://doi.org/10.1007/s11249-018-1001-6 CrossRefGoogle Scholar
  28. 28.
    Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon N Y. 43, 1660–1666 (2005).  https://doi.org/10.1016/j.carbon.2005.01.044 CrossRefGoogle Scholar
  29. 29.
    Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25, 247–253 (2007).  https://doi.org/10.1007/s11249-006-9176-7 CrossRefGoogle Scholar
  30. 30.
    Lu, H.F., Fei, B., Xin, J.H., Wang, R.H., Li, L., Guan, W.C.: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion. Carbon N Y. 45, 936–942 (2007).  https://doi.org/10.1016/j.carbon.2007.01.001 CrossRefGoogle Scholar
  31. 31.
    Kristiansen, K., Zeng, H., Wang, P., Israelachvili, J.N.: Microtribology of aqueous carbon nanotube dispersions. Adv. Funct. Mater. 21, 4555–4564 (2011).  https://doi.org/10.1002/adfm.201101478 CrossRefGoogle Scholar
  32. 32.
    Falvo, M.R., Taylor, R.M., Helser, A., Chi, V., Brooks, F.P., Washburn, S., et al.: Nanometre-scale rolling and sliding of carbon nanotubes. Nature. 397, 236–238 (1999).  https://doi.org/10.1038/16662 CrossRefGoogle Scholar
  33. 33.
    Chen, X.H., Chen, C.S., Xiao, H.N., Liu, H.B., Zhou, L.P., Li, S.L., et al.: Dry friction and wear characteristics of nickel/carbon nanotube electroless composite deposits. Tribol. Int. 39, 22–28 (2006).  https://doi.org/10.1016/j.triboint.2004.11.008 CrossRefGoogle Scholar
  34. 34.
    Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M., et al.: Frictional anisotropy of oriented carbon nanotube surfaces. Tribol. Lett 18, 59–62 (2005)CrossRefGoogle Scholar
  35. 35.
    Majumder, M., Rendall, C., Li, M., Behabtu, N., Eukel, J.A., Hauge, R.H., et al.: Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010).  https://doi.org/10.1016/j.ces.2009.11.042 CrossRefGoogle Scholar
  36. 36.
    Mirri, F., Ma, A.W.K., Hsu, T.T., Behabtu, N., Eichmann, S.L., Young, C.C., et al.: High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano. 6, 9737–9744 (2012).  https://doi.org/10.1021/nn303201g CrossRefGoogle Scholar
  37. 37.
    Bardecker, J.A., Afzali, A., Tulevski, G.S., Graham, T., Hannon, J.B., Jen, A.K.Y.: Directed assembly of single-walled carbon nanotubes via drop-casting onto a UV-patterned photosensitive monolayer. J. Am. Chem. Soc. 130, 7226–7227 (2008).  https://doi.org/10.1021/ja802407f CrossRefGoogle Scholar
  38. 38.
    De Nicola, F., Castrucci, P., Scarselli, M., Nanni, F., Cacciotti, I., De Crescenzi, M.: Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel. Nanotechnology. 26, 145701 (2015).  https://doi.org/10.1088/0957-4484/26/14/145701 CrossRefGoogle Scholar
  39. 39.
    Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Jane Minay, E., Shaffer, M.S.P.: Electrophoretic deposition of carbon nanotubes. Carbon N Y. 44, 3149–3160 (2006).  https://doi.org/10.1016/j.carbon.2006.06.021 CrossRefGoogle Scholar
  40. 40.
    Thomas, B.J.C., Boccaccini, A.R., Shaffer, M.S.P.: Multi-walled carbon nanotube coatings using electrophoretic deposition (EPD). J. Am. Ceram. Soc. 88, 980–982 (2005)CrossRefGoogle Scholar
  41. 41.
    Cho, J., Konopka, K., Rozniatowski, K., Garcia-Lecina, E., Shaffer, M.S.P., Boccaccini, A.R.: Characterisation of carbon nanotube films deposited by electrophoretic deposition. Carbon N Y. 47, 58–67 (2009).  https://doi.org/10.1016/j.carbon.2008.08.028 CrossRefGoogle Scholar
  42. 42.
    Van der Biest, O.O., Vandeperre, L.J.: Electrophoretic deposition of materials. Annu. Rev. Mater. Sci. 29, 327–352 (1999).  https://doi.org/10.1146/annurev.matsci.29.1.327 CrossRefGoogle Scholar
  43. 43.
    Sarkar, P., Nicholson, P.S.: Electrophoretic deposition (EPD): Mechanisms, kinetics, and application to ceramics. J. Am. Ceram. Soc. 79, 1987–2002 (1996).  https://doi.org/10.1111/j.1151-2916.1996.tb08929.x CrossRefGoogle Scholar
  44. 44.
    Boccaccini, A.R., Zhitomirsky, I.: Application of electrophoretic and electrolytic deposition techniques in ceramics processing. Curr. Opin. Solid State Mater. Sci. 6, 251–260 (2002)CrossRefGoogle Scholar
  45. 45.
    Reinert, L., Lasserre, F., Gachot, C., Grützmacher, P., MacLucas, T., Souza, N., et al.: Long-lasting solid lubrication by CNT-coated patterned surfaces. Sci. Rep. 7, 42873 (2017).  https://doi.org/10.1038/srep42873 CrossRefGoogle Scholar
  46. 46.
    Lasagni, A.: Advanced design of periodical structures by laser interference metallurgy in the micro / nano scale on macroscopic areas. Saarland University, Saarbrücken (2006)Google Scholar
  47. 47.
    Lasagni, A., D’Alessandria, M., Giovanelli, R., Mücklich, F.: Advanced design of periodical architectures in bulk metals by means of Laser Interference Metallurgy. Appl Surf Sci. 254, 930–936 (2007).  https://doi.org/10.1016/j.apsusc.2007.08.010 CrossRefGoogle Scholar
  48. 48.
    Leitz, K.-H., Redlingshöfer, B., Reg, Y., Otto, A., Schmidt, M.: Metal Ablation with Short and Ultrashort Laser Pulses. Phys Procedia. 12, 230–238 (2011).  https://doi.org/10.1016/j.phpro.2011.03.128 CrossRefGoogle Scholar
  49. 49.
    Ferrari, A., Robertson, J.: Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B. 61, 14095–14107 (2000).  https://doi.org/10.1103/PhysRevB.61.14095 CrossRefGoogle Scholar
  50. 50.
    Thomas, B.J.C., Shaffer, M.S.P., Freeman, S., Koopman, M., Chawla, K.K., Boccaccini, A.R.: Electrophoretic Deposition of Carbon Nanotubes on Metallic Surfaces. Key Eng. Mater. 314, 141–146 (2006).  https://doi.org/10.4028/www.scientific.net/KEM.314.141 CrossRefGoogle Scholar
  51. 51.
    Le Harzic, R., Breitling, D., Weikert, M., Sommer, S., Föhl, C., Dausinger, F., et al.: Ablation comparison with low and high energy densities for Cu and Al with ultra-short laser pulses. Appl Phys A. 80, 1589–1593 (2005).  https://doi.org/10.1007/s00339-005-3206-4 CrossRefGoogle Scholar
  52. 52.
    Johnson, K.L.: Contact Mechanics, 1st edn. Cambridge University Press, New York (1985)CrossRefGoogle Scholar
  53. 53.
    Bonse, J., Krüger, J., Höhm, S., Rosenfeld, A.: Femtosecond laser-induced periodic surface structures. J Laser Appl. 24, 42006 (2012).  https://doi.org/10.2351/1.4712658 CrossRefGoogle Scholar
  54. 54.
    Raillard, B., Gouton, L., Ramos-Moore, E., Grandthyll, S., Müller, F., Mücklich, F.: Ablation effects of femtosecond laser functionalization on steel surfaces. Surf Coatings Technol. 207, 102–109 (2012).  https://doi.org/10.1016/j.surfcoat.2012.06.023 CrossRefGoogle Scholar
  55. 55.
    Lehman, J.H., Terrones, M., Mansfield, E., Hurst, K.E., Meunier, V.: Evaluating the characteristics of multiwall carbon nanotubes. Carbon N Y. 49, 2581–2602 (2011).  https://doi.org/10.1016/j.carbon.2011.03.028 CrossRefGoogle Scholar
  56. 56.
    DiLeo, R.A., Landi, B.J., Raffaelle, R.P.: Purity assessment of multiwalled carbon nanotubes by Raman spectroscopy. J. Appl. Phys. 2007;101.  https://doi.org/10.1063/1.2712152
  57. 57.
    Shimada, T., Sugai, T., Fantini, C., Souza, M., Cançado, L.G., Jorio, A., et al.: Origin of the 2450 cm-1 Raman bands in HOPG, single-wall and double-wall carbon nanotubes. Carbon N Y. 43, 1049–1054 (2005).  https://doi.org/10.1016/j.carbon.2004.11.044 CrossRefGoogle Scholar
  58. 58.
    Dresselhaus, M.S., Dresselhaus, G., Saito, R.: Jorio a. Raman spectroscopy of carbon nanotubes. Phys. Rep. 409, 47–99 (2005).  https://doi.org/10.1016/j.physrep.2004.10.006 CrossRefGoogle Scholar
  59. 59.
    Oh, S.J., Cook, D.C., Townsend, H.E.: Characterization of iron oxides commonly formed as corrosion products on steel. Hyperfine Interact 112, 59–66 (1998)CrossRefGoogle Scholar
  60. 60.
    McCarty, K.F., Boehme, D.R.: A Raman study of the systems Fe3 – xCrxO4 and Fe2 – xCrxO3. J Solid State Chem. 79, 19–27 (1989).  https://doi.org/10.1016/0022-4596(89)90245-4 CrossRefGoogle Scholar
  61. 61.
    Farrow, R., Benner, R., Nagelberg, A., Mattern, P.: Characterization of surface oxides by Raman spectroscopy. Thin Solid Films. 73, 353–358 (1980).  https://doi.org/10.1016/0040-6090(80)90499-X CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceSaarland UniversitySaarbrückenGermany
  2. 2.Institut für Oberflächen- und Schichtanalytik GmbHKaiserlauternGermany

Personalised recommendations