Tribology Letters

, 66:86 | Cite as

Scratching an Al/Si Interface: Molecular Dynamics Study of a Composite Material

  • Zhibo Zhang
  • Iyad Alabd Alhafez
  • Herbert M. Urbassek
Original Paper


We study scratching of a composite built from two widely different materials, a ductile and soft metal (Al) and a hard and brittle ceramic (Si). When scratching far away from the interface, the response of the pure elemental materials is monitored. A higher hardness and a lower friction coefficient are found for Si as compared to Al. The pile-up in Al is larger than in Si. When scratching along the interface, the composite responds approximately with the averaged behavior of the two pure materials. This applies to the forces as well as to the hardness and the friction coefficient. However, we observe a peculiar material flow, which can be described by a rotation around the scratch direction, inducing material mixing both in the groove bottom and in the pile-up; the harder Si expands on the groove bottom, while the softer Al expands in the pile-up region. When scratching across the interface, the material response switches on a length scale of the order of the contact radius. While the friction coefficient and the contact pressure switch from and to the values of the respective pure material, the behavior of the forces and areas is more complex. This is in particular due to the lateral pile-up that forms differently on the ductile metal and the amorphized Si parts.


Metal matrix composites Atomistic simulation Scratching Al/Si interface Hardness 



Simulations were performed at the High Performance Cluster Elwetritsch (RHRK, TU Kaiserslautern, Germany). We acknowledge the financial support of the Deutsche Forschungsgemeinschaft via the IRTG 2057 and the SFB 926.


  1. 1.
    Elmadagli, M., Perry, T., Alpas, A.T.: A parametric study of the relationship between microstructure and wear resistance of Al-Si alloys. Wear 262, 79 (2007)CrossRefGoogle Scholar
  2. 2.
    Chen, M., Meng-Burany, X., Perry, T.A., Alpas, A.T.: Micromechanisms and mechanics of ultra-mild wear in Al-Si alloys. Acta Mater. 56, 5605–5616 (2008)CrossRefGoogle Scholar
  3. 3.
    Joseph, S., Kumar, S., Bhadram, V.S., Narayana, C.: Stress states in individual Si particles of a cast al-si alloy: micro-Raman analysis and microstructure based modeling. J. Alloys Compd. 625, 296–308 (2015)CrossRefGoogle Scholar
  4. 4.
    Prashanth, K.G., Debalina, B., Wang, Z., Gostin, P.F., Gebert, A., Calin, M., Kühn, U., Kamaraj, M., Scudino, S., Eckert, J.: Tribological and corrosion properties of Al-12Si produced by selective laser melting. J. Mater. Res. 29, 2044–2054 (2014)CrossRefGoogle Scholar
  5. 5.
    Mahato, A., Sachdev, A., Biswas, S.K.: Lubricated tribology of a eutectic aluminium-silicon alloy in the ultra-mild wear and mild wear regimes for long sliding times. ACS Appl. Mater. Interfaces 2, 2870–2879 (2010)CrossRefGoogle Scholar
  6. 6.
    Dienwiebel, M., Pöhlmann, K., Scherge, M.: Origins of the wear resistance of AlSi cylinder bore surfaces studies by surface analytical tools. Tribol. Int. 40, 1597–1602 (2007)CrossRefGoogle Scholar
  7. 7.
    Riahi, A.R., Perry, T., Alpas, A.T.: Scuffing resistances of Al-Si alloys: effects of etching condition, surface roughness and particle morphology. Mater. Sci. Eng. A 343, 76–81 (2003)CrossRefGoogle Scholar
  8. 8.
    Das, S., Perry, T., Biswas, S.K.: Effect of surface etching on the lubricated sliding wear of an eutectic aluminium-silicon alloy. Tribol. Lett. 21, 193–204 (2006)CrossRefGoogle Scholar
  9. 9.
    Mahato, A., Perry, T.A., Jayaram, V., Biswas, S.K.: Pressure and thermally induced stages of wear in dry sliding of a steel ball against an aluminium-silicon alloy flat. Wear 268, 1080–1090 (2010)CrossRefGoogle Scholar
  10. 10.
    Elmadagli, M., Alpas, A.T.: Sliding wear of an Al-18.5 wt% Si alloy tested in an argon atmosphere and against DLC coated counterfaces. Wear 261, 823–834 (2006)CrossRefGoogle Scholar
  11. 11.
    Alhafez, I.A., Brodyanski, A., Kopnarski, M., Urbassek, H.M.: Influence of tip geometry on nanoscratching. Tribol. Lett. 65, 26 (2017)CrossRefGoogle Scholar
  12. 12.
    Kelchner, C.L., Plimpton, S.J., Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)CrossRefGoogle Scholar
  13. 13.
    Li, J., Van Vliet, K.J., Zhu, T., Yip, S., Suresh, S.: Atomistic mechanisms governing elastic limit and incipient plasticity in crystals. Nature 418, 307–310 (2002)CrossRefGoogle Scholar
  14. 14.
    Ziegenhain, G., Urbassek, H.M., Hartmaier, A.: Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J. Appl. Phys. 107, 061807 (2010)CrossRefGoogle Scholar
  15. 15.
    Hagelaar, J.H.A., Bitzek, E., Flipse, C.F.J., Gumbsch, P.: Atomistic simulations of the formation and destruction of nanoindentation contacts in tungsten. Phys. Rev. B 73, 045425 (2006)CrossRefGoogle Scholar
  16. 16.
    Gao, Y., Ruestes, C.J., Urbassek, H.M.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. 90, 232–240 (2014)CrossRefGoogle Scholar
  17. 17.
    Gao, Y., Brodyanski, A., Kopnarski, M., Urbassek, H.M.: Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput. Mater. Sci. 103, 77–89 (2015)CrossRefGoogle Scholar
  18. 18.
    Alhafez, I.A., Ruestes, C.J., Gao, Y., Urbassek, H.M.: Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks. Nanotechnology 27, 045706 (2016)CrossRefGoogle Scholar
  19. 19.
    Goel, S., Faisal, N.H., Luo, X., Yan, J., Agrawal, A.: Nanoindentation of polysilicon and single crystal silicon: molecular dynamics simulation and experimental validation. J. Phys. D 47, 275304 (2014)CrossRefGoogle Scholar
  20. 20.
    Zhang, Z., Stukowski, A., Urbassek, H.M.: Interplay of dislocation-based plasticity and phase transformation during Si nanoindentation. Comput. Mater. Sci. 119, 82–89 (2016)CrossRefGoogle Scholar
  21. 21.
    Zhang, Z., Urbassek, H.M.: Indentation into an Al-Si composite: enhanced dislocation mobility at interface. J. Mater. Sci. 53, 799–813 (2018)CrossRefGoogle Scholar
  22. 22.
    Fang, T.-H., Jia-Hung, W.: Molecular dynamics simulations on nanoindentation mechanisms of multilayered films. Comput. Mater. Sci. 43, 785–790 (2008)CrossRefGoogle Scholar
  23. 23.
    Shen, Y.-L., Blada, C.B., Williams, J.J., Chawla, N.: Cyclic indentation behavior of metal-ceramic nanolayered composites. Mater. Sci. Eng. A 557, 119–125 (2012)CrossRefGoogle Scholar
  24. 24.
    Jun, S., Lee, Y., Kim, S.Y., Im, S.: Large-scale molecular dynamics simulations of Al(111) nanoscratching. Nanotechnology 15, 1169–1174 (2004)CrossRefGoogle Scholar
  25. 25.
    Alhafez, I.A., Urbassek, H.M.: Scratching of hcp metals: a molecular-dynamics study. Comput. Mater. Sci. 113, 187–197 (2016)CrossRefGoogle Scholar
  26. 26.
    Zarudi, I., Cheong, W.C.D., Zou, J., Zhang, L.C.: Atomistic structure of monocrystalline silicon in surface nano-modification. Nanotechnology 15, 104 (2004)CrossRefGoogle Scholar
  27. 27.
    Mylvaganam, K., Zhang, L.C.: Nanotwinning in monocrystalline silicon upon nanoscratching. Scr. Mater. 65, 214–216 (2011)CrossRefGoogle Scholar
  28. 28.
    Goel, S., Kovalchenko, A., Stukowski, A., Cross, G.: Influence of microstructure on the cutting behaviour of silicon. Acta Mater. 105, 464–478 (2016)CrossRefGoogle Scholar
  29. 29.
    Noreyan, A., Qi, Y., Stoilov, V.: Critical shear stresses at aluminum-silicon interfaces. Acta Mater. 56, 3461–3469 (2008)CrossRefGoogle Scholar
  30. 30.
    Zhang, Z., Urbassek, H.M.: Dislocations penetrating an Al-Si interface. AIP Adv. 7, 125119 (2017)CrossRefGoogle Scholar
  31. 31.
    Saidi, P., Frolov, T., Hoyt, J.J., Asta, M.: An angular embedded atom method interatomic potential for the aluminum-silicon system. Model. Simul. Mater. Sci. Eng. 22, 055010 (2014)CrossRefGoogle Scholar
  32. 32.
    Mendelev, M.I., Kramer, M.J., Becker, C.A., Asta, M.: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723–1750 (2008)CrossRefGoogle Scholar
  33. 33.
    Stillinger, F.H., Weber, T.A.: Computer simulation of local order in condensed phases of Si. Phys. Rev. B 31, 5262–5271 (1985)CrossRefGoogle Scholar
  34. 34.
    Gao, Y., Ruestes, C.J., Tramontina, D.R., Urbassek, H.M.: Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Sol. 75, 58–75 (2015)CrossRefGoogle Scholar
  35. 35.
    Godet, J., Pizzagalli, L., Brochard, S., Beauchamp, P.: Theoretical study of dislocation nucleation from simple surface defects in semiconductors. Phys. Rev. B 70, 054109 (2004)CrossRefGoogle Scholar
  36. 36.
    Chrobak, D., Tymiak, N., Beaber, A., Ugurlu, O., Gerberich, W.W., Nowak, R.: Deconfinement leads to changes in the nanoscale plasticity of silicon. Nat. Nanotechnol. 6, 480 (2011)CrossRefGoogle Scholar
  37. 37.
    Hale, L.M., Zhang, D.-B., Zhou, X., Zimmerman, J.A., Moody, N.R., Dumitrica, T., Ballarini, R., Gerberich, W.W.: Dislocation morphology and nucleation within compressed Si nanospheres: a molecular dynamics study. Comput. Mater. Sci. 54, 280–286 (2012)CrossRefGoogle Scholar
  38. 38.
    Zhang, Z., Urbassek, H.M.: Comparative study of interatomic interaction potentials for describing indentation into Si using molecular dynamics simulation. Appl. Mech. Mater. 869, 3–8 (2017)CrossRefGoogle Scholar
  39. 39.
    Zhang, Z., Urbassek, H.M.: Dislocation-based strengthening mechanisms in metal-matrix nanocomposites: a molecular dynamics study of the influence of reinforcement shape in the Al-Si system. Comput. Mater. Sci. 145, 109–115 (2018)CrossRefGoogle Scholar
  40. 40.
    Alcalá, J., Dalmau, R., Franke, O., Biener, M., Biener, J., Hodge, A.: Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Phys. Rev. Lett. 109, 075502 (2012)CrossRefGoogle Scholar
  41. 41.
    Ruestes, C.J., Bringa, E.M., Gao, Y., Urbassek, H.M.: Molecular dynamics modeling of nanoindentation. In: Tiwari, A., Natarajan, S. (eds.) Applied Nanoindentation in Advanced Materials, pp. 313–345. Wiley, Chichester (2017)CrossRefGoogle Scholar
  42. 42.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995).
  43. 43.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010).
  44. 44.
    Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRefGoogle Scholar
  45. 45.
    Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)CrossRefGoogle Scholar
  46. 46.
    Stukowski, A., Arsenlis, A.: On the elastic-plastic decomposition of crystal deformation at the atomic scale. Model. Simul. Mater. Sci. Eng. 20, 035012 (2012)CrossRefGoogle Scholar
  47. 47.
    Honeycutt, J.D., Andersen, H.C.: Molecular dynamics study of melting and freezing of small Lennard-Jones clusters. J. Phys. Chem. 91, 4950–4963 (1987)CrossRefGoogle Scholar
  48. 48.
    Clarke, A.S., Jonsson, H.: Structural changes accompanying densification of random hard-sphere packings. Phys. Rev. B 47, 3975 (1993)CrossRefGoogle Scholar
  49. 49.
    Maras, E., Trushin, O., Stukowski, A., Ala-Nissila, T., Jonsson, H.: Global transition path search for dislocation formation in Ge on Si(001). Comput. Phys. Commun. 205, 13–21 (2016)CrossRefGoogle Scholar
  50. 50.
    Alhafez, I.A., Ruestes, C.J., Urbassek, H.M.: Size of the plastic zone produced by nanoscratching. Tribol. Lett. 66, 20 (2018)CrossRefGoogle Scholar
  51. 51.
    Moore, A.J.W., Tegart, W.J.M.: Relation between friction and hardness. Proc. R. Soc. Lond. A 212, 452–458 (1952)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany

Personalised recommendations