Tribology Letters

, 66:45 | Cite as

Influence of Surface Roughness on the Lubrication Effect of Carbon Nanoparticle-Coated Steel Surfaces

  • L. ReinertEmail author
  • S. Schütz
  • S. Suárez
  • F. Mücklich
Original Paper


In the present study, a systematic evaluation of the influence of the surface roughness on the lubrication activity of multi-wall carbon nanotubes (MWCNT) and onion-like carbon (OLC) is performed. MWCNT and OLC are chosen as they both present an sp2-hybridization of carbon atoms, show a similar layered atomic structure, and exhibit the potential to roll on top of a surface. However, their morphology (size and aspect ratio) clearly differs, allowing for a methodical study of these differences on the lubrication effect on systematically varied surface roughness. Stainless steel platelets with different surface finishing were produced and coated by electrophoretic deposition with OLC or MWCNT. The frictional behavior is recorded using a ball-on-disk tribometer, and the resulting wear tracks are analyzed by scanning electron microscopy in order to reveal the acting tribological mechanisms. It is found that the lubrication mechanism of both types of particles is traced back to a mixture between a rolling motion on the surfaces and particle degradation, including the formation of nanocrystalline graphitic layers. This investigation further highlights that choosing the suitable surface finish for a tribological application is crucial for achieving beneficial tribological effects of carbon nanoparticle lubricated surfaces.


Solid lubrication Carbon nanotubes Onion-like carbon Lubrication mechanisms Surface roughness 



The present work is supported by funding from the Deutsche Forschungsgemeinschaft (DFG, project: MU 959/38-1 and SU 911/1-1). L. R., S.S., and F. M. wish to acknowledge the EFRE Funds of the European Commission for support of activities within the AMELab project. This work was supported by the CREATe-Network Project, Horizon 2020 of the European Commission (RISE Project No. 644013).


  1. 1.
    Holmberg, K., Andersson, P., Erdemir, A.: Global energy consumption due to friction in passenger cars. Tribol. Int. 47, 221–234 (2012). CrossRefGoogle Scholar
  2. 2.
    Donnet, C., Erdemir, A.: Solid lubricant coatings: recent developments and future trends. Tribol. Lett. 17, 389–397 (2004)CrossRefGoogle Scholar
  3. 3.
    Aouadi, S.M., Gao, H., Martine, A., Scharf, T.W., Muratore, C.: Lubricious oxide coatings for extreme temperature applications: a review. Surf. Coat. Technol. 257, 266–277 (2014)CrossRefGoogle Scholar
  4. 4.
    Li, Y., Li, B.X., Zou, W.J.: The relationship between nanocrystalline structure and frictional properties of nanodiamond/Ni composite coatings by brush plating. Appl. Mech. Mater. 80–81, 683–687 (2011). CrossRefGoogle Scholar
  5. 5.
    Hirata, A., Yoshioka, N.: Sliding friction properties of carbon nanotube coatings deposited by microwave plasma chemical vapor deposition. Tribol. Int. 37, 893–898 (2004). CrossRefGoogle Scholar
  6. 6.
    Miyoshi, K., Street Jr., K.W., Vander Wal, R.L., Andrews, R., Sayir, A.: Solid lubrication by multiwalled carbon nanotubes in air and in vacuum. Tribol. Lett. 19, 191–201 (2005). CrossRefGoogle Scholar
  7. 7.
    Reinert, L., Suárez, S., Rosenkranz, A.: Tribo-mechanisms of carbon nanotubes: friction and wear behavior of CNT-reinforced nickel matrix composites and CNT-coated bulk nickel. Lubricants 4, 11 (2016). CrossRefGoogle Scholar
  8. 8.
    Gogotsi, Y., Presser, V.: Carbon Nanomaterials. CRC Press, Boca Raton (2014). ISBN 9781138076815Google Scholar
  9. 9.
    Bakshi, S.R., Lahiri, D., Agarwal, A.: Carbon nanotube reinforced metal matrix composites—a review. Int. Mater. Rev. 55, 41–64 (2010). CrossRefGoogle Scholar
  10. 10.
    Mochalin, V.N., Shenderova, O., Ho, D., Gogotsi, Y.: The properties and applications of nanodiamonds. Nat. Nanotechnol. 7, 11–23 (2012). CrossRefGoogle Scholar
  11. 11.
    Iijima, S.: Helical microtubules of graphitic carbon. Nature 354, 56–58 (1991)CrossRefGoogle Scholar
  12. 12.
    Cebik, J., McDonough, J.K., Peerally, F., Medrano, R., Neitzel, I., Gogotsi, Y., Osswald, S.: Raman spectroscopy study of the nanodiamond-to-carbon onion transformation. Nanotechnology 24, 1–10 (2013). CrossRefGoogle Scholar
  13. 13.
    Zeiger, M., Jäckel, N., Aslan, M., Weingarth, D., Presser, V.: Understanding structure and porosity of nanodiamond-derived carbon onions. Carbon 84, 584–598 (2015). CrossRefGoogle Scholar
  14. 14.
    Reinert, L., Lasserre, F., Gachot, C., Grützmacher, P., MacLucas, T., Souza, N., Mücklich, F., Suarez, S.: Long-lasting solid lubrication by CNT-coated patterned surfaces. Sci. Rep. (2017). Google Scholar
  15. 15.
    Hu, J.J., Jo, S.H., Ren, Z.F., Voevodin, A., Zabinski, J.S.: Tribological behavior and graphitization of carbon nanotubes grown on 440C stainless steel. Tribol. Lett. 19, 119–125 (2005). CrossRefGoogle Scholar
  16. 16.
    Tunable friction behavior of oriented carbon nanotube films: Dickrell, P.L., Pal, S.K., Bourne, G.R., Muratore, C., Voevodin, a. a., Ajayan, P.M., Schadler, L.S., Sawyer, W.G. Tribol. Lett. 24, 85–90 (2006). CrossRefGoogle Scholar
  17. 17.
    Zhang, X., Luster, B., Church, A., Muratore, C., Voevodin, A.A., Kohli, P., Aouadi, S., Talapatra, S.: Carbon nanotube-MoS2 composites as solid lubricants. ACS Appl. Mater. Interfaces 1, 735–739 (2009). CrossRefGoogle Scholar
  18. 18.
    Arai, S., Fujimori, A., Murai, M., Endo, M.: Excellent solid lubrication of electrodeposited nickel-multiwalled carbon nanotube composite films. Mater. Lett. 62, 3545–3548 (2008). CrossRefGoogle Scholar
  19. 19.
    Chen, W.X., Tu, J.P., Wang, L.Y., Gan, H.Y., Xu, Z.D., Zhang, X.B.: T ribological application of carbon nanotubes in a metal-based composite coating and composites. Carbon 41, 215–222 (2003)CrossRefGoogle Scholar
  20. 20.
    Kim, K.T., Cha, S.I., Hong, S.H.: Hardness and wear resistance of carbon nanotube reinforced Cu matrix nanocomposites. Mater. Sci. Eng. A 449–451, 46–50 (2007). CrossRefGoogle Scholar
  21. 21.
    Scharf, T.W., Neira, A., Hwang, J.Y., Tiley, J., Banerjee, R.: Self-lubricating carbon nanotube reinforced nickel matrix composites. J. Appl. Phys. 106, 013508 (2009). CrossRefGoogle Scholar
  22. 22.
    Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005). CrossRefGoogle Scholar
  23. 23.
    Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additive in water. Tribol. Lett. 25, 247–253 (2006). CrossRefGoogle Scholar
  24. 24.
    Lu, H.F., Fei, B., Xin, J.H., Wang, R.H., Li, L., Guan, W.C.: Synthesis and lubricating performance of a carbon nanotube seeded miniemulsion. Carbon 45, 936–942 (2007). CrossRefGoogle Scholar
  25. 25.
    Dickrell, P.L., Sinnott, S.B., Hahn, D.W., Raravikar, N.R., Schadler, L.S., Ajayan, P.M., Sawyer, W.G.: Frictional anisotropy of oriented carbon nanotube surfaces. Tribol. Lett. 18, 59–62 (2005). CrossRefGoogle Scholar
  26. 26.
    Ni, B., Sinnott, S.B.: Tribological properties of carbon nanotube bundles predicted from atomistic simulations. Surf. Sci. 487, 87–96 (2001). CrossRefGoogle Scholar
  27. 27.
    Martin, J.M., Ohmae, N.: Nanolubricants. Wiley, New York (2008). ISBN 978-0-470-06552-5CrossRefGoogle Scholar
  28. 28.
    Hirata, A., Igarashi, M., Kaito, T.: Study on solid lubricant properties of carbon onions produced by heat treatment of diamond clusters or particles. Tribol. Int. 37, 899–905 (2004). CrossRefGoogle Scholar
  29. 29.
    Park, S., Srivastava, D., Cho, K.: Generalized chemical reactivity of curved surfaces: carbon nanotubes. Nano Lett. 3, 1273–1277 (2003). CrossRefGoogle Scholar
  30. 30.
    Street, K.W., Marchetti, M., Vander Wal, R.L., Tomasek, A.J.: Evaluation of the tribological behavior of nano-onions in Krytox 143AB. Tribol. Lett. 16, 143–149 (2004)CrossRefGoogle Scholar
  31. 31.
    Bucholz, E.W., Phillpot, S.R., Sinnott, S.B.: Molecular dynamics investigation of the lubrication mechanism of carbon nano-onions. Comput. Mater. Sci. 54, 91–96 (2012). CrossRefGoogle Scholar
  32. 32.
    Menezes, P.L., Kishore, Kailas, S.V.: Effect of surface roughness parameters and surface texture on friction and transfer layer formation in tin–steel tribo-system. J. Mater. Process. Technol. 208, 372–382 (2008). CrossRefGoogle Scholar
  33. 33.
    Persson, B.N.J., Albohr, O., Tartaglino, U., Volokitin, A.I., Tosatti, E.: On the nature of surface roughness with application to contact mechanics, sealing, rubber friction and adhesion. J. Phys. Condens. Matter. (2005). Google Scholar
  34. 34.
    Sahin, M., Çetinarslan, C.S., Akata, H.E.: Effect of surface roughness on friction coefficients during upsetting processes for different materials. Mater. Des. 28, 633–640 (2007). CrossRefGoogle Scholar
  35. 35.
    Svahn, F., Kassman-Rudolphi, Å., Wallén, E.: The influence of surface roughness on friction and wear of machine element coatings. Wear 254, 1092–1098 (2003). CrossRefGoogle Scholar
  36. 36.
    Komvopoulos, K.: Adhesion and friction forces in microelectromechanical systems: mechanisms, measurement, surface modification techniques, and adhesion theory. J. Adhes. Sci. Technol. 17, 477–517 (2003). CrossRefGoogle Scholar
  37. 37.
    Bowden, F.P., Tabor, D.: Mechanism of metallic friction. Nature 3798, 197–199 (1942). CrossRefGoogle Scholar
  38. 38.
    Czichos, H., Habig, K.: Tribologie-Handbuch. Vieweg + Teubner, Wiesbaden (2010). ISBN 978-3-8348-0017-6CrossRefGoogle Scholar
  39. 39.
    Hirano, M., Shinjo, K., Kaneko, R., Murata, Y.: Anisotropy of frictional forces in muscovite mica. Phys. Rev. Lett. 67, 2642–2646 (1991)CrossRefGoogle Scholar
  40. 40.
    Dienwiebel, M., Verhoeven, G., Pradeep, N., Frenken, J., Heimberg, J., Zandbergen, H.: Superlubricity of graphite. Phys. Rev. Lett. 92, 126101 (2004). CrossRefGoogle Scholar
  41. 41.
    Tomlinson, G.A.: A molecular theory of friction. Lond. Edinb. Dublin Philos. Mag. J. Sci. 7, 905–939 (1929). CrossRefGoogle Scholar
  42. 42.
    Weiss, M., Elmer, F.: Dry friction in the Frenkel–Kontorova–Tomlinson model: static properties. Phys. Rev. B Condens. Matter 53, 7539–7549 (1996)CrossRefGoogle Scholar
  43. 43.
    Etsion, I.: State of the art in laser surface texturing. J. Tribol. Trans. ASME 127, 248 (2005). CrossRefGoogle Scholar
  44. 44.
    Rapoport, L., Moshkovich, A., Perfilyev, V., Gedanken, A., Koltypin, Y., Sominski, E., Halperin, G., Etsion, I.: Wear life and adhesion of solid lubricant films on laser-textured steel surfaces. Wear 267, 1203–1207 (2009). CrossRefGoogle Scholar
  45. 45.
    Gachot, C., Rosenkranz, A., Reinert, L., Ramos-Moore, E., Souza, N., Müser, M.H., Mücklich, F.: Dry friction between laser-patterned surfaces: role of alignment, structural wavelength and surface chemistry. Tribol. Lett. 9, 193–202 (2013). CrossRefGoogle Scholar
  46. 46.
    Rosenkranz, A., Reinert, L., Gachot, C., Mücklich, F.: Alignment and wear debris effects between laser-patterned steel surfaces under dry sliding conditions. Wear 318, 49–61 (2014). CrossRefGoogle Scholar
  47. 47.
    Sondhauß, J., Fuchs, H., Schirmeisen, A.: Frictional properties of a mesoscopic contact with engineered surface roughness. Tribol. Lett. 42, 319–324 (2011)CrossRefGoogle Scholar
  48. 48.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006). CrossRefGoogle Scholar
  49. 49.
    Greenwood, J., Williamson, J.: Contact of nominally flat surfaces. R. Soc. Publ. 295, 300–319 (1966)Google Scholar
  50. 50.
    Jackson, R.L., Green, I.: A statistical model of elasto-plastic asperity contact between rough surfaces. Tribol. Int. 39, 906–914 (2006). CrossRefGoogle Scholar
  51. 51.
    Akbulut, M.: Nanoparticle-based lubrication systems. J. Powder Metall. Min. 1, 377–411 (2012). CrossRefGoogle Scholar
  52. 52.
    Wu, Y.Y., Tsui, W.C., Liu, T.C.: Experimental analysis of tribological properties of lubricating oils with nanoparticle additives. Wear 262, 819–825 (2007). CrossRefGoogle Scholar
  53. 53.
    Ivanov, M.G., Ivanov, D.M., Pavlyshko, S.V., Petrov, I., Vargas, A., McGuire, G., Shenderova, O.: Nanodiamond-based nanolubricants. Fuller. Nanotub. Carbon Nanostruct. 20, 606–610 (2012). CrossRefGoogle Scholar
  54. 54.
    Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008). CrossRefGoogle Scholar
  55. 55.
    Khalilpourazary, S., Meshkat, S.S.: Investigation of the effects of alumina nanoparticles on spur gear surface roughness and hob tool wear in hobbing process. Int. J. Adv. Manuf. Technol. 71, 1599–1610 (2014). CrossRefGoogle Scholar
  56. 56.
    Rahmati, B., Sarhan, A.A.D., Sayuti, M.: Investigating the optimum molybdenum disulfide (MoS2) nanolubrication parameters in CNC milling of AL6061-T6 alloy. Int. J. Adv. Manuf. Technol. 70, 1143–1155 (2014). CrossRefGoogle Scholar
  57. 57.
    Hwang, Y., Lee, C., Choi, Y., Cheong, S., Kim, D., Lee, K., Lee, J., Kim, S.H.: Effect of the size and morphology of particles dispersed in nano-oil on friction performance between rotating discs. J. Mech. Sci. Technol. 25, 2853–2857 (2011). CrossRefGoogle Scholar
  58. 58.
    Kogovšek, J., Remškar, M., Mrzel, A., Kalin, M.: Influence of surface roughness and running-in on the lubrication of steel surfaces with oil containing MoS2 nanotubes in all lubrication regimes. Tribol. Int. 61, 40–47 (2013). CrossRefGoogle Scholar
  59. 59.
    Tevet, O., Von-Huth, P., Popovitz-Biro, R., Rosentsveig, R., Wagner, H.D., Tenne, R.: Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad. Sci. 108, 19901–19906 (2011). CrossRefGoogle Scholar
  60. 60.
    Majumder, M., Rendall, C., Li, M., Behabtu, N., Eukel, J.A., Hauge, R.H., Schmidt, H.K., Pasquali, M.: Insights into the physics of spray coating of SWNT films. Chem. Eng. Sci. 65, 2000–2008 (2010). CrossRefGoogle Scholar
  61. 61.
    Mirri, F., Ma, A.W.K., Hsu, T.T., Behabtu, N., Eichmann, S.L., Young, C.C., Tsentalovich, D.E., Pasquali, M.: High-performance carbon nanotube transparent conductive films by scalable dip coating. ACS Nano 6, 9737–9744 (2012)CrossRefGoogle Scholar
  62. 62.
    De Nicola, F., Castrucci, P., Scarselli, M., Nanni, F., Cacciotti, I., De Crescenzi, M.: Super-hydrophobic multi-walled carbon nanotube coatings for stainless steel. Nanotechnology 26, 145701 (2015). CrossRefGoogle Scholar
  63. 63.
    Boccaccini, A.R., Cho, J., Roether, J.A., Thomas, B.J.C., Jane Minay, E., Shaffer, M.S.P.: Electrophoretic deposition of carbon nanotubes. Carbon 44, 3149–3160 (2006). CrossRefGoogle Scholar
  64. 64.
    Besra, L., Liu, M.: A review on fundamentals and applications of electrophoretic deposition (EPD). Prog. Mater Sci. 52, 1–61 (2007). CrossRefGoogle Scholar
  65. 65.
    Reinert, L., Zeiger, M., Suarez, S., Presser, V., Mücklich, F.: Dispersion analysis of carbon nanotubes, carbon onions, and nanodiamonds for their application as reinforcement phase in nickel metal matrix composites. RSC Adv. 5, 95149–95159 (2015). CrossRefGoogle Scholar
  66. 66.
    De Riccardis, M.F., Carbone, D., Rizzo, A.: A novel method for preparing and characterizing alcoholic EPD suspensions. J. Colloid Interface Sci. 307, 109–115 (2007). CrossRefGoogle Scholar
  67. 67.
    Yen, B.K., Ishihara, T.: Effect of humidity on friction and wear of Al–Si eutectic alloy and Al–Si alloy-graphite composites. Wear 198, 169–175 (1996)CrossRefGoogle Scholar
  68. 68.
    Savage, R.H.: Graphite lubrication. J. Appl. Phys. 19, 1 (1948). CrossRefGoogle Scholar
  69. 69.
    Berman, D., Erdemir, A., Sumant, A.V.: Graphene: a new emerging lubricant. Mater. Today 17, 31–42 (2014). CrossRefGoogle Scholar
  70. 70.
    Blau, P.J.: On the nature of running-in. Tribol. Int. 38, 1007–1012 (2005). CrossRefGoogle Scholar
  71. 71.
    Dogan, H., Findik, F., Morgul, O.: Friction and wear behaviour of implanted AISI 316L SS and comparison with a substrate. Mater. Des. 23, 605–610 (2002). CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Materials ScienceSaarland UniversitySaarbrückenGermany

Personalised recommendations