Advertisement

Tribology Letters

, 66:20 | Cite as

Size of the Plastic Zone Produced by Nanoscratching

  • Iyad Alabd Alhafez
  • Carlos J. Ruestes
  • Herbert M. Urbassek
Original Paper

Abstract

Nanoscratching of ductile materials creates plastic zones surrounding the scratch groove. We approximate the geometry of these zones by a semicylinder with its axis oriented along the scratch direction. The radius and the length of the cylinder, as well as the length of the dislocations in the network created quantify the plasticity generated. Using molecular dynamics simulations, we characterize the plastic zones in six metals with fcc, bcc, and hcp crystal structures. We find that the plastic zone sizes after scratch are comparable to those after indent. Due to dislocation reactions, the dislocation networks simplify, reducing the total length of dislocations. As a consequence, the average dislocation density in the plastic zone stays roughly constant. Individually, we find exceptions from this simple picture. Fcc metals show strong plastic activity, which even increases during scratch. The hcp metals on the other side show the least plastic activity. Here the plasticity may be strongly reduced during scratch and particularly during tip withdrawal.

Keywords

Molecular dynamics Nanoindentation Scratching Dislocations Plasticity 

Notes

Acknowledgements

IAA and HMU acknowledge support by the Deutsche Forschungsgemeinschaft via the Sonderforschungsbereich 926. CJR acknowledges support by ANPCyT PICT-2015-0342, SECTyP-UNCuyo, a donation by the Nvidia Corporation, and computational resources at Mendieta-CCAD-UNC through MinCyT-PDC-SNCAD.

References

  1. 1.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)CrossRefGoogle Scholar
  2. 2.
    Fischer-Cripps, A.C.: Nanoindentation, 2nd edn. Springer, New York (2004)CrossRefGoogle Scholar
  3. 3.
    Durst, K., Backes, B., Göken, M.: Indentation size effect in metallic materials: correcting for the size of the plastic zone. Scr. Mater. 52, 1093–1097 (2005)CrossRefGoogle Scholar
  4. 4.
    Ruestes, C.J., Bringa, E.M., Gao, Y., Urbassek, H.M.: Molecular dynamics modeling of nanoindentation. In: Tiwari, A., Natarajan, S. (eds.) Appl. Nanoindentation Adv. Mater., pp. 313–345. Wiley, Chichester, UK (2017). (Chap. 14) Google Scholar
  5. 5.
    Gao, Y., Ruestes, C.J., Tramontina, D.R., Urbassek, H.M.: Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Solids 75, 58–75 (2015)CrossRefGoogle Scholar
  6. 6.
    Alabd Alhafez, I., Ruestes, C.J., Gao, Y., Urbassek, H.M.: Nanoindentation of hcp metals: a comparative simulation study of the evolution of dislocation networks. Nanotechnology 27, 045706 (2016)CrossRefGoogle Scholar
  7. 7.
    Komanduri, R., Chandrasekaran, N., Raff, L.M.: MD simulation of indentation and scratching of single crystal aluminum. Wear 240, 113–143 (2000)CrossRefGoogle Scholar
  8. 8.
    Mulliah, D., Christopher, D., Kenny, S.D., Smith, R.: Nanoscratching of silver (100) with a diamond tip. Nucl. Instrum. Methods B 202, 294–299 (2003)CrossRefGoogle Scholar
  9. 9.
    Mulliah, D., Kenny, S.D., Smith, R., Sanz-Navarro, C.F.: Molecular dynamic simulations of nanoscratching of silver (100). Nanotechnology 15, 243–249 (2004)CrossRefGoogle Scholar
  10. 10.
    Jun, S., Lee, Y., Kim, S.Y., Im, S.: Large-scale molecular dynamics simulations of Al(111) nanoscratching. Nanotechnology 15, 1169–1174 (2004)CrossRefGoogle Scholar
  11. 11.
    Fang, T.-H., Liu, C.-H., Shen, S.-T., Prior, S.D., Ji, L.-W., Wu, J.-H.: Nanoscratch behavior of multi-layered films using molecular dynamics. Appl. Phys. A 90, 753–758 (2008)CrossRefGoogle Scholar
  12. 12.
    Zhang, J.J., Sun, T., Hartmaier, A., Yan, Y.D.: Atomistic simulation of the influence of nanomachininginduced deformation on subsequent nanoindentation. Comput. Mater. Sci. 59, 14–21 (2012)CrossRefGoogle Scholar
  13. 13.
    Mulliah, D., Kenny, S.D., McGee, E., Smith, R., Richter, A., Wolf, B.: Atomistic modelling of ploughing friction in silver, iron and silicon. Nanotechnology 17, 1807–1818 (2006)CrossRefGoogle Scholar
  14. 14.
    Lu, C., Gao, Y., Michal, G., Zhu, H., Huynh, N.N., Tieu, A.K.: Molecular dynamic simulation of effect of crystallographic orientation on nano-indentation/scratching behaviors of bcc iron. In: Luo, J., Meng, Y., Shao, T., Zhao, Q. (eds.) Adv. Tribol., pp. 562–563. Springer, Berlin (2010)CrossRefGoogle Scholar
  15. 15.
    Gao, Y., Ruestes, C.J., Urbassek, H.M.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. 90, 232–240 (2014)CrossRefGoogle Scholar
  16. 16.
    Gao, Y., Brodyanski, A., Kopnarski, M., Urbassek, H.M.: Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput. Mater. Sci. 103, 77–89 (2015)CrossRefGoogle Scholar
  17. 17.
    Alabd Alhafez, I., Brodyanski, A., Kopnarski, M., Urbassek, H.M.: Influence of tip geometry on nanoscratching. Tribol. Lett. 65, 26 (2017)CrossRefGoogle Scholar
  18. 18.
    Alabd Alhafez, I., Urbassek, H.M.: Scratching of hcp metals: a molecular-dynamics study. Comput. Mater. Sci. 113, 187–197 (2016)CrossRefGoogle Scholar
  19. 19.
    Mendelev, M.I., Kramer, M.J., Becker, C.A., Asta, M.: Analysis of semi-empirical interatomic potentials appropriate for simulation of crystalline and liquid Al and Cu. Philos. Mag. 88, 1723–1750 (2008)CrossRefGoogle Scholar
  20. 20.
    Mishin, Y., Mehl, M.J., Papaconstantopoulos, D.A., Voter, A.F., Kress, J.D.: Structural stability and lattice defects in copper: Ab initio, tight-binding, and embedded-atom calculations. Phys. Rev. B 63, 224106 (2001)CrossRefGoogle Scholar
  21. 21.
    Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83, 3977–3994 (2003)CrossRefGoogle Scholar
  22. 22.
    Dai, X.D., Kong, Y., Li, J.H., Liu, B.X.: Extended Finnis–Sinclair potential for bcc and fcc metals and alloys. J. Phys. Condens. Matter 18, 4527–4542 (2006)CrossRefGoogle Scholar
  23. 23.
    Mendelev, M.I., Underwood, T.L., Ackland, G.J.: Development of an interatomic potential for the simulation of defects, plasticity, and phase transformations in titanium. J. Chem. Phys. 145, 154102 (2016)CrossRefGoogle Scholar
  24. 24.
    Bertolino, G., Ruda, M., Pasianot, R., Farkas, D.: Atomistic simulation of the tension/compression response of textured nanocrystalline HCP Zr. Comput. Mater. Sci. 130, 172–182 (2017)CrossRefGoogle Scholar
  25. 25.
    Pasianot, R.C., Monti, A.M.: A many body potential for \(\alpha\)-Zr. Application to defect properties. J. Nucl. Mater. 264, 198–205 (1999)CrossRefGoogle Scholar
  26. 26.
    Shao, S., Medyanik, S.N.: Dislocation-interface interaction in nanoscale fcc metallic bilayers. Mech. Res. Commun. 37, 315–319 (2010)CrossRefGoogle Scholar
  27. 27.
    Yaghoobi, M., Voyiadjis, G.Z.: Effect of boundary conditions on the MD simulation of nanoindentation. Comput. Mater. Sci. 95, 626–636 (2014)CrossRefGoogle Scholar
  28. 28.
    Voyiadjis, G.Z., Yaghoobi, M.: Large scale atomistic simulation of size effects during nanoindentation: dislocation length and hardness. Mater. Sci. Eng. A 634, 20–31 (2015)CrossRefGoogle Scholar
  29. 29.
    Ziegenhain, G., Urbassek, H.M., Hartmaier, A.: Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J. Appl. Phys. 107, 061807 (2010)CrossRefGoogle Scholar
  30. 30.
    Alcalá, J., Dalmau, R., Franke, O., Biener, M., Biener, J., Hodge, A.: Planar defect nucleation and annihilation mechanisms in nanocontact plasticity of metal surfaces. Phys. Rev. Lett. 109, 075502 (2012)CrossRefGoogle Scholar
  31. 31.
    Ruestes, C.J., Stukowski, A., Tang, Y., Tramontina, D.R., Erhart, P., Remington, B.A., Urbassek, H.M., Meyers, M.A., Bringa, E.M.: Atomistic simulation of tantalum nanoindentation: effects of indenter diameter, penetration velocity, and interatomic potentials on defect mechanisms and evolution. Mater. Sci. Eng. A 613, 390–403 (2014)CrossRefGoogle Scholar
  32. 32.
    Li, J., Fang, Q., Liu, Y., Zhang, L.: A molecular dynamics investigation into the mechanisms of subsurface damage and material removal of monocrystalline copper subjected to nanoscale high speed grinding. Appl. Surf. Sci. 303, 331–343 (2014)CrossRefGoogle Scholar
  33. 33.
    Li, J., Liu, B., Luo, H., Fang, Q., Liu, Y., Liu, Y.: A molecular dynamics investigation into plastic deformation mechanism of nanocrystalline copper for different nanoscratching rates. Comput. Mater. Sci. 118, 66–76 (2016)CrossRefGoogle Scholar
  34. 34.
    Kelchner, C.L., Plimpton, S.J., Hamilton, J.C.: Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58, 11085–11088 (1998)CrossRefGoogle Scholar
  35. 35.
    Ziegenhain, G., Hartmaier, A., Urbassek, H.M.: Pair vs many-body potentials: influence on elastic and plastic behavior in nanoindentation of fcc metals. J. Mech. Phys. Solids 57, 1514–1526 (2009)CrossRefGoogle Scholar
  36. 36.
    Plimpton, St.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). http://lammps.sandia.gov/
  37. 37.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool, Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). http://www.ovito.org/
  38. 38.
    Henderson, A.: Paraview guide, a parallel visualization application. Kitware Inc. (2007). http://www.paraview.org
  39. 39.
    Stukowski, A., Albe, K.: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18, 085001 (2010)CrossRefGoogle Scholar
  40. 40.
    Stukowski, A., Bulatov, V.V., Arsenlis, A.: Automated identification and indexing of dislocations in crystal interfaces. Model. Simul. Mater. Sci. Eng. 20, 085007 (2012)CrossRefGoogle Scholar
  41. 41.
    Stukowski, A.: Structure identification methods for atomistic simulations of crystalline materials. Model. Simul. Mater. Sci. Eng. 20, 045021 (2012)CrossRefGoogle Scholar
  42. 42.
    Stukowski, A., Arsenlis, A.: On the elastic-plastic decomposition of crystal deformation at the atomic scale. Model. Simul. Mater. Sci. Eng. 20, 035012 (2012)CrossRefGoogle Scholar
  43. 43.
    Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. Br. J. Appl. Phys. 17, 1521–1544 (1966)CrossRefGoogle Scholar
  44. 44.
    Tsuru, T., Kaji, Y., Shibutani, Y.: Minimum energy motion and core structure of pure edge and screw dislocations in aluminum. J. Comput. Sci. Tech. 4, 185–193 (2010)CrossRefGoogle Scholar
  45. 45.
    Muzyk, M., Pakiela, Z., Kurzydlowski, K.J.: Ab initio calculations of the generalized stacking fault energy in aluminium alloys. Scr. Mater. 64, 916–918 (2011)CrossRefGoogle Scholar
  46. 46.
    Monnet, G., Terentyev, D.: Structure and mobility of the \(\frac{1}{2} \langle 111 \rangle \{112\}\) edge dislocation in BCC iron studied by molecular dynamics. Acta Mater. 57, 1416–1426 (2009)CrossRefGoogle Scholar
  47. 47.
    Hafez Haghighat, S.M., von Pezold, J., Race, C.P., Körmann, F., Friak, M., Neugebauer, J., Raabe, D.: Influence of the dislocation core on the glide of the \(\frac{1}{2} \langle 111 \rangle \{110\}\) edge dislocation in bcc-iron. Comput. Mater. Sci. 87, 274–282 (2014)CrossRefGoogle Scholar
  48. 48.
    Remington, T.P., Ruestes, C.J., Bringa, E.M., Remington, B.A., Lu, C.H., Kad, B., Meyers, M.A.: Plastic deformation in nanoindentation of tantalum: A new mechanism for prismatic loop formation. Acta Mater. 78, 378–393 (2014)CrossRefGoogle Scholar
  49. 49.
    Tenckhoff, E.: Deformation Mechanisms, Texture, and Anisotropy in Zirconium and Zircaloy, ASTM Special Technical Publication, vol. 966. ASTM International, Philadelphia (1988)Google Scholar
  50. 50.
    Gunkelmann, N., Alabd Alhafez, I., Steinberger, D., Urbassek, H.M., Sandfeld, S.: Nanoscratching of iron: a novel approach to characterize dislocation microstructures. Comput. Mater. Sci. 135, 181–188 (2017)CrossRefGoogle Scholar
  51. 51.
    Po, G., Cui, Y., Rivera, D., Cereceda, D., Swinburne, T.D., Marian, J., Ghoniem, N.: A phenomenological dislocation mobility law for bcc metals. Acta Mater. 119, 123–135 (2016)CrossRefGoogle Scholar
  52. 52.
    Dezerald, L., Rodney, D., Clouet, E., Ventelon, L., Willaime, F.: Plastic anisotropy and dislocation trajectory in bcc metals. Nat. Commun. 7, 11695 (2016)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC, part of Springer Nature 2017

Authors and Affiliations

  1. 1.Physics Department and Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany
  2. 2.CONICET and Facultad de Ciencias Exactas y NaturalesUniversidad Nacional de CuyoMendozaArgentina

Personalised recommendations