Tribology Letters

, 65:154 | Cite as

A Computational Study of the Effects of Strain Hardening in Micro-asperity Friction Models

  • Pushkaraj Bhagwat
  • Bhargava Sista
  • Kumar VemagantiEmail author
Original Paper


In this paper, we study the effects of plastic strain hardening and damage on the friction response of a surface at the microscopic and macroscopic scales. At the microscale, the role played by hardening and damage in the response of a single asperity is determined using three-dimensional finite element analysis. The sample materials for the asperity are Al 2024-T3 and Ti6Al4V, which are modeled as isotropic bilinear plastic and include Johnson–Cook damage. The friction responses for two different damage models (Johnson–Cook and Bao–Wierzbicki) are also compared for the perfectly plastic case. In the simulations the asperity is initially compressed in order to induce a normal preload and then sheared to study the friction response. Then a statistical homogenization approach is used to propagate these effects to the macroscale. Toward this end, the surface is modeled as an isotropic Gaussian random process. The computed microscale responses are parameterized, and the overall macroscopic response of the surface is determined. Results of this study show that, at the microscale, strain hardening increases the coefficient of friction, particularly at low interference values. Similarly, material response plays a significant role at the macroscale over a wide range of normal force values.


Friction Statistical homogenization Material hardening Material damage Asperity 



This work was partially supported by the University of Cincinnati Simulation Center. We gratefully acknowledge an allocation of computing time from the Ohio Supercomputer Center.


  1. 1.
    Bogy, D.: An elastic-plastic model for the contact of rough surfaces. J. Tribol. 109, 257 (1987). doi: 10.1115/1.3261348 CrossRefGoogle Scholar
  2. 2.
    Evseev, D., Medvedev, B., Grigoriyan, G.: Modification of the elastic-plastic model for the contact of rough surfaces. Wear 150(1), 79 (1991). doi: 10.1016/0043-1648(91)90307-G,
  3. 3.
    Chang, W.: An elastic-plastic contact model for a rough surface with an ion-plated soft metallic coating. Wear 212(2), 229 (1997). doi: 10.1016/S0043-1648(97)00148-8 CrossRefGoogle Scholar
  4. 4.
    Zhao, Y., Maietta, D., Chang, L.: An asperity microcontact model incorporating the transition from elastic deformation to fully plastic flow. J. Tribol. 122(1), 86 (2000). doi: 10.1115/1.555332 CrossRefGoogle Scholar
  5. 5.
    Kucharski, S., Klimczak, T., Polijaniuk, A., Kaczmarek, J.: Finite-elements model for the contact of rough surfaces. Wear 177(1), 1 (1994). doi: 10.1016/0043-1648(94)90112-0,
  6. 6.
    Vu-Quoc, L., Zhang, X., Lesburg, L.: A normal force-displacement model for contacting spheres accounting for plastic deformation: force-driven formulation. J. Appl. Mech. 67(2), 363 (2000). doi: 10.1115/1.1305334 CrossRefGoogle Scholar
  7. 7.
    Kogut, L., Etsion, I.: Elastic-plastic contact analysis of a sphere and a rigid flat. J. Appl. Mech. 69(5), 657 (2002). doi: 10.1115/1.1490373 CrossRefGoogle Scholar
  8. 8.
    Jackson, R., Green, I.: A finite element study of elasto-plastic hemispherical contact against a rigid flat. J. Tribol. 127(2), 343 (2005). doi: 10.1115/1.1866166 CrossRefGoogle Scholar
  9. 9.
    Shankar, S., Mayuram, M.: A finite element based study on the elastic-plastic transition behavior in a hemisphere in contact with a rigid flat. J. Tribol. 130(4), 044502 (2008). doi: 10.1115/1.2958081 CrossRefGoogle Scholar
  10. 10.
    Chatterjee, B., Sahoo, P.: Effect of strain hardening on elastic-plastic contact of a deformable sphere against a rigid flat under full stick contact condition. Adv. Tribol. 2012, 8 (2012). doi: 10.1155/2012/472794 CrossRefGoogle Scholar
  11. 11.
    Mindlin, R.: Compliance of elastic bodies in contact. J. Appl. Mech. 16, 259–268 (1949)Google Scholar
  12. 12.
    Mindlin, R., Deresiewicz, H.: Elastic spheres in contact under varying oblique forces. J. Appl. Mech. 20, 327–344 (1953)Google Scholar
  13. 13.
    Tabor, D.: Junction growth in metallic friction: the role of combined stresses and surface contamination. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 251(1266), 378 (1959). doi: 10.1098/rspa.1959.0114 CrossRefGoogle Scholar
  14. 14.
    Hamilton, G.: Proceedings of the institution of mechanical engineers. Part C J. Mech. Eng. Sci. 197(1), 53 (1983)CrossRefGoogle Scholar
  15. 15.
    Kogut, L., Etsion, I.: A semi-analytical solution for the sliding inception of a spherical contact. J. Tribol. Trans. ASME 125(3), 499 (2003). doi: 10.1115/1.1538190 CrossRefGoogle Scholar
  16. 16.
    Brizmer, V., Kligerman, Y., Etsion, I.: Elastic-plastic spherical contact under combined normal and tangential loading in full stick. Tribol. Lett. 25(1), 61 (2007). doi: 10.1007/s11249-006-9156-y CrossRefGoogle Scholar
  17. 17.
    Wu, A., Shi, X., Polycarpou, A.: An elastic-plastic spherical contact model under combined normal and tangential loading. J. Appl. Mech. 79(5), 051001 (2012)CrossRefGoogle Scholar
  18. 18.
    Wu, A., Shi, X.: Numerical investigation of adhesive wear and static friction based on the ductile fracture of junction. J. Appl. Mech. 80(4), 041032 (2013)CrossRefGoogle Scholar
  19. 19.
    Bao, Y., Wierzbicki, T.: On fracture locus in the equivalent strain and stress triaxiality space. Int. J. Mech. Sci. 46(1), 81 (2004)CrossRefGoogle Scholar
  20. 20.
    Johnson, G., Cook, W.: Fracture characteristics of three metals subjected to various strains, strain rates, temperatures and pressures. Eng. Fract. Mech. 21(1), 31 (1985). doi: 10.1016/0013-7944(85)90052-9,
  21. 21.
    Hooputra, H., Gese, H., Dell, H., Werner, H.: A comprehensive failure model for crashworthiness simulation of aluminium extrusions. Int. J. Crashworth. 9(5), 449 (2004). doi: 10.1533/ijcr.2004.0289 CrossRefGoogle Scholar
  22. 22.
    Sista, B., Vemaganti, K.: A computational study of dry static friction between elastoplastic surfaces using a statistically homogenized microasperity model. J. Tribol. 137(2), 021601 (2015)CrossRefGoogle Scholar
  23. 23.
    Longuet-Higgins, M.: Statistical properties of an isotropic random surface. Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Sci. 250(975), 157 (1957)CrossRefGoogle Scholar
  24. 24.
    Nayak, P.R.: Random process model of rough surfaces. J. Lubr. Technol. 93, 398 (1971)CrossRefGoogle Scholar
  25. 25.
    Francis, H.: Application of spherical indentation mechanics to reversible and irreversible contact between rough surfaces. Wear 45(2), 221 (1977)CrossRefGoogle Scholar
  26. 26.
    Sista, B., Vemaganti, K.: Estimation of statistical parameters of rough surfaces suitable for developing micro-asperity friction models. Wear 316, 6 (2014)CrossRefGoogle Scholar
  27. 27.
    Eriten, M., Polycarpou, A., Bergman, L.: Physics-based modeling for partial slip behavior of spherical contacts. Int. J. Solids Struct. 47(18), 2554 (2010). doi: 10.1016/j.ijsolstr.2010.05.017,
  28. 28.
    Rabinowicz, E.: Friction and Wear of Materials. Wiley series on the science and technology of materials. Wiley, New York (1965).
  29. 29.
    Moosbrugger, C.: ASM International, Ohio p. 299 (2002)Google Scholar
  30. 30.
    Bao, Y., Wierzbicki, T.: A comparative study on various ductile crack formation criteria. J. Eng. Mater. Technol. 126(3), 314 (2004)CrossRefGoogle Scholar
  31. 31.
    Lesuer, D.: Experimental investigation of material models for ti-6al-4v and 2024-t3. Tech. Rep. FAA Report DOT/FAA/AR-00/25. US Department of Transportation, Federal Aviation Administration (2000)Google Scholar
  32. 32.
    Giglio, M., Manes, A., Viganò, F.: Numerical simulation of the slant fracture of a helicopter’s rotor hub with ductile damage failure criteria. Fatigue Fract. Eng. Mater. Struct. 35(4), 317 (2012)CrossRefGoogle Scholar
  33. 33.
    Bhushan, B.: Contact mechanics of rough surfaces in tribology: single asperity contact. Appl. Mech. Rev. 49(5), 275 (1996). doi: 10.1115/1.3101928 CrossRefGoogle Scholar
  34. 34.
    Timoshenko, S., Goodier, J.: Theory of Elasticity, 3rd edn. McGraw-Hill Kogakusha Ltd , Tokyo (1970). Previous ed. (B51-9908) 1951, classified at 539.3[1]Google Scholar
  35. 35.
    Chang, W., Etsion, I., Bogy, D.: Static friction coefficient model for metallic rough surfaces. J. Tribol. 110(1), 57 (1988). doi: 10.1115/1.3261575 CrossRefGoogle Scholar
  36. 36.
    MathWorks, Inc. MATLAB: Version 7.9.0 Documentation (2010)Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.Simulia, Inc.CranstonUSA
  2. 2.Ansys, Inc.HillsboroUSA
  3. 3.Department of Mechanical and Materials EngineeringUniversity of CincinnatiCincinnatiUSA

Personalised recommendations