Tribology Letters

, 65:103 | Cite as

Gauging Persson Theory on Adhesion

Original Paper
Part of the following topical collections:
  1. Special Issue: The Contact-Mechanics Challenge


In this work, we propose three amendments to Persson’s contact mechanics theory, the most important one being a modification of the way in which the stress distribution broadens with increasing resolution of random roughness features. The three adjustable coefficients of our treatment are gauged on existing reference data and tested against results of the contact mechanics challenge and a new set of data for adhesive slabs of finite width. Although the coefficients turn out to be of order unity, their problem-specific tuning is required to achieve highly accurate results, such as an essentially perfect dependence of contact area on load for non-adhesive, self-affine solids. Despite an overall convincing agreement between theory and full simulations, we find it to be intrinsically impossible to make the theory reflect the exact asymptotics of the stress distribution at small and large stresses. In addition, we find that the transition from small to large contact happens too abruptly with decreasing thickness of the elastic slab.



MHM thanks Bo Persson for helpful discussions, Nikolay Prodanov and Wolf Dapp for technical support in the initial phases of the project, the German research foundation (DFG) for financial support through grant Mu 1694/5-1, and the Jülich Supercomputing Centre for computing time on JUQUEEN.


  1. 1.
    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phy. 115(8), 3840 (2001)CrossRefGoogle Scholar
  2. 2.
    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61(4), 201–227 (2006)CrossRefGoogle Scholar
  3. 3.
    Archard, J.F.: Elastic deformation and the laws of friction. Proc. R. Soc. A Math. Phys. Eng. Sci. 243(1233), 190–205 (1957)CrossRefGoogle Scholar
  4. 4.
    Greenwood, J.A., Williamson, J.B.P.: Contact of nominally flat surfaces. Proc. R. Soc. A Math. Phys. Eng. Sci. 295(1442), 300–319 (1966)CrossRefGoogle Scholar
  5. 5.
    Bush, A.W., Gibson, R.D., Thomas, T.R.: The elastic contact of a rough surface. Wear 35(1), 87–111 (1975)CrossRefGoogle Scholar
  6. 6.
    Hyun, S., Pei, L., Molinari, J.-F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70(2), 026117 (2004)CrossRefGoogle Scholar
  7. 7.
    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. Europhys. Lett. (EPL) 77(3), 38005 (2007)CrossRefGoogle Scholar
  8. 8.
    Carbone, G., Bottiglione, F.: Asperity contact theories: do they predict linearity between contact area and load? J. Mech. Phys. Sol. 56(8), 2555–2572 (2008)CrossRefGoogle Scholar
  9. 9.
    Paggi, M., Ciavarella, M.: The coefficient of proportionality \(\kappa\) between real contact area and load, with new asperity models. Wear 268(7–8), 1020–1029 (2010)CrossRefGoogle Scholar
  10. 10.
    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Sol. 60(5), 973–982 (2012)CrossRefGoogle Scholar
  11. 11.
    Prodanov, N., Dapp, W.B., Müser, M.H.: On the contact area and mean gap of rough, elastic contacts: dimensional analysis, numerical corrections, and reference data. Tribol. Lett. 53(2), 433–448 (2013)CrossRefGoogle Scholar
  12. 12.
    Pohrt, R., Popov, V.L., Filippov, A.E.: Normal contact stiffness of elastic solids with fractal rough surfaces for one- and three-dimensional systems. Phys. Rev. E 86(2), 026710 (2012)CrossRefGoogle Scholar
  13. 13.
    Pastewka, L., Prodanov, N., Lorenz, B., Müser, M.H., Robbins, Mark O, Persson, Bo N.J.: Finite-size scaling in the interfacial stiffness of rough elastic contacts. Phys. Rev. E 87(6), 062809 (2013)CrossRefGoogle Scholar
  14. 14.
    Yang, C., Persson, B.N.J.: Contact mechanics: contact area and interfacial separation from small contact to full contact. Journal of Physics: Condensed Matter 20(21), 215214 (2008)Google Scholar
  15. 15.
    Pastewka, Lars, Robbins, Mark O.: Contact area of rough spheres: Large scale simulations and simple scaling laws. Applied Physics Letters 108(22), 221601 (2016)CrossRefGoogle Scholar
  16. 16.
    Müser, Martin H.: On the contact area of nominally flat hertzian contacts. Tribology Letters 64(1), 14 (2016)CrossRefGoogle Scholar
  17. 17.
    Almqvist, A., Campañá, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: Comparison between theory and numerical techniques. Journal of the Mechanics and Physics of Solids 59(11), 2355–2369 (2011)CrossRefGoogle Scholar
  18. 18.
    Campañá, C., Persson, B.N.J., Müser, M.H.: Transverse and normal interfacial stiffness of solids with randomly rough surfaces. Journal of Physics: Condensed Matter 23(8), 085001 (2011)Google Scholar
  19. 19.
    Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108(24), 244301 (2012)CrossRefGoogle Scholar
  20. 20.
    Dapp, W.B., Müser, M.H.: Fluid leakage near the percolation threshold. Sci. Rep. 6(1), 19513 (2016)CrossRefGoogle Scholar
  21. 21.
    Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20(31), 312001 (2008)CrossRefGoogle Scholar
  22. 22.
    Campañá, Carlos, Müser, Martin H., Robbins, Mark O.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20(35), 354013 (2008)CrossRefGoogle Scholar
  23. 23.
    Carbone, G., Mangialardi, L., Persson, B.N.J.: Adhesion between a thin elastic plate and a hard randomly rough substrate. Phys. Rev. B 70(12), 125407 (2004)CrossRefGoogle Scholar
  24. 24.
    Yang, C., Persson, B.N.J., Israelachvili, J., Rosenberg, K.: Contact mechanics with adhesion: interfacial separation and contact area. Europhys. Lett. (EPL) 84(4), 46004 (2008)CrossRefGoogle Scholar
  25. 25.
    Persson, B.N.J., Scaraggi, M.: Theory of adhesion: role of surface roughness. J. Chem. Phy. 141(12), 124701 (2014)CrossRefGoogle Scholar
  26. 26.
    Carbone, G., Lorenz, B., Persson, B.N.J., Wohlers, A.: Contact mechanics and rubber friction for randomly rough surfaces with anisotropic statistical properties. Eur. Phys. J. E 29(3), 275–284 (2009)CrossRefGoogle Scholar
  27. 27.
    Persson, B.N.J.: Elastoplastic contact between randomly rough surfaces. Phys. Rev. Lett. 87(11), 116101 (2001)CrossRefGoogle Scholar
  28. 28.
    Carbone, G., Scaraggi, M., Tartaglino, U.: Adhesive contact of rough surfaces: comparison between numerical calculations and analytical theories. Eur. Phys. J. E 30(1), 65–74 (2009)CrossRefGoogle Scholar
  29. 29.
    Müser, M.H., Dapp, W.B., Bugnicourt, R., Sainsot, P., Lesaffre, N., Lubrecht, T.A., et al.: And other challenge participants. Tribol. Lett. (in press)Google Scholar
  30. 30.
    Persson, B.N.J.: Adhesion between an elastic body and a randomly rough hard surface. Eur. Phys. J. E 8(4), 385–401 (2002)CrossRefGoogle Scholar
  31. 31.
    Manners, W., Greenwood, J.A.: Some observations on persson’s diffusion theory of elastic contact. Wear 261(5–6), 600–610 (2006)CrossRefGoogle Scholar
  32. 32.
    Dapp, W.B., Prodanov, N., Müser, M.H.: Systematic analysis of persson’s contact mechanics theory of randomly rough elastic surfaces. J. Phys. Condens. Matter 26(35), 355002 (2014)CrossRefGoogle Scholar
  33. 33.
    Campañá, C., Müser, M.H.: Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74(7), 075420 (2006)CrossRefGoogle Scholar
  34. 34.
    Müser, M.H.: A dimensionless measure for adhesion and effects of the range of adhesion in contacts of nominally flat surfaces. Tribol. Int. 100, 41–47 (2016)CrossRefGoogle Scholar
  35. 35.
    Pastewka, Lars, Robbins, Mark O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. 111(9), 3298–3303 (2014)CrossRefGoogle Scholar
  36. 36.
    Fischer, Sarah C.L., Arzt, Eduard, Hensel, René: Composite pillars with a tunable interface for adhesion to rough substrates. ACS Appl. Mater. Interf. 9(1), 1036–1044 (2017)CrossRefGoogle Scholar
  37. 37.
    Ram Gopal, Balijepalli, Fischer, Sarah C.L., Hensel, René, McMeeking, Robert M., Arzt, Eduard: Numerical study of adhesion enhancement by composite fibrils with soft tip layers. J. Mech. Phys. Sol. 99, 357–378 (2017)CrossRefGoogle Scholar
  38. 38.
    Jackson, Robert L., Green, Itzhak: On the modeling of elastic contact between rough surfaces. Tribol. Trans. 54(2), 300–314 (2011)CrossRefGoogle Scholar
  39. 39.
    Hohenberg, P., Kohn, W.: Inhomogeneous electron gas. Phys. Rev. 136(3B), B864–B871 (1964)CrossRefGoogle Scholar
  40. 40.
    Müser, M.H.: Rigorous field-theoretical approach to the contact mechanics of rough elastic solids. Phys. Rev. Lett. 100(5) (2008). doi: 10.1103/PhysRevLett.100.055504 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2017

Authors and Affiliations

  1. 1.INM – Leibniz Institute for New MaterialsSaarbrückenGermany
  2. 2.Department of Materials Science and EngineeringSaarland UniversitySaarbrückenGermany

Personalised recommendations