Tribology Letters

, 65:94 | Cite as

The Effect of Lubricant Additives on Hydrogen Permeation Under Rolling Contact

  • Hiroyoshi Tanaka
  • Vlad Bogdan NisteEmail author
  • Yuta Abe
  • Joichi Sugimura
Original Paper


This study describes the effects of lubricant additives on the permeation of hydrogen into high-strength-bearing steel in rolling contact conditions. Oil-lubricated tests were conducted in a hydrogen atmosphere under high temperature/pressure. Trioctylphosphate and zinc dialkyldithiophosphate (ZDDP) were used as lubricant additives. Thermal desorption spectrometry (TDS) was performed to measure the amount of permeated hydrogen immediately after the rolling contact tests. TDS analysis suggested that ZDDP is very efficient at preventing hydrogen permeation into the substrate. Auger electron spectroscopy revealed the generation of a protective chemical tribofilm containing zinc, sulphur, oxygen and phosphorus at the interface. This tribofilm should be responsible for the lower rates of hydrogen permeation into the bearing steel.


Lubricant additives Tribofilm Hydrogen permeation 


  1. 1.
    Louthan, M.R.: Hydrogen embrittlement of metals: a primer for the failure analyst. J. Fail. Anal. Prev. 8, 289–307 (2008)CrossRefGoogle Scholar
  2. 2.
    Tanaka, H., Morofuji, T., Enami, K., Hashimoto, M., Sugimura, J.: Effect of environmental gas on surface initiated rolling contact fatigue. Tribol. Online 8(1), 90–96 (2013)CrossRefGoogle Scholar
  3. 3.
    Pundt, A., Kirchheim, R.: Hydrogen in metals: microstructural aspects. Annu. Rev. Mater. Res. 36, 555–608 (2006)CrossRefGoogle Scholar
  4. 4.
    Kino, N., Otani, K.: The influence of hydrogen on rolling contact fatigue life and its improvement. JSAE Rev. 24, 289–294 (2003)CrossRefGoogle Scholar
  5. 5.
    Kohara, M., Kawamura, T., Egami, M.: Study on mechanism of hydrogen generation from lubricants. Tribol. Trans. 49(1), 53–60 (2006)CrossRefGoogle Scholar
  6. 6.
    Lu, R., Nanao, H., Kobayashi, K., Kubo, T., Mori, S.: Effect of lubricant additives on tribochemical decomposition of hydrocarbon oil on nascent steel surfaces. J. Jpn. Pet. Inst. 53(1), 55–60 (2010)CrossRefGoogle Scholar
  7. 7.
    Uyama, H., Yamada, H., Hidaka, H., Mitamura, N.: The effects of hydrogen on microstructural change and surface originated flaking in rolling contact fatigue. Tribol. Online 6(2), 123–132 (2011)CrossRefGoogle Scholar
  8. 8.
    Ciruna, J.A., Szieleit, H.J.: The effect of hydrogen on the rolling contact fatigue life of AISI 52100 and 440C steel balls. Wear 24(1), 107–118 (1973)CrossRefGoogle Scholar
  9. 9.
    Ray, D., Vincent, L., Coquillet, B., Guirandenq, P.: Hydrogen embrittlement of a stainless ball bearing steel. Wear 65(1), 103–111 (1980)CrossRefGoogle Scholar
  10. 10.
    Fujita, S., Mitamura, N., Murakami, Y.: Research of new factors affecting rolling contact fatigue life, World Tribology Congress III, (2005)Google Scholar
  11. 11.
    Mizuhara, K., Taki, T., Yamanaka, K.: Anomalous cracking of bearing balls under a liquid-butane environment. Tribol. Int. 26(2), 135–142 (1993)CrossRefGoogle Scholar
  12. 12.
    Endo, T., Dong, D., Imai, Y., Yamamoto, Y.: Study on rolling contact fatigue in hydrogen atmosphere—improvement of rolling contact fatigue life by formation of surface film. Tribol. Interface Eng. Ser. 48, 343–350 (2005)CrossRefGoogle Scholar
  13. 13.
    Hibi, Y., Murakami, T., Mano, H.: Influence of tribochemical reaction on friction and wear behavior of metallic materials in n-hexane and in ethanol. Tribol. Online 11(2), 174–182 (2016)CrossRefGoogle Scholar
  14. 14.
    Luyckx, J.: Hammering wear impact fatigue hypothesis WEC/irWEA failure mode on roller bearings, Wind turbine tribology seminar, Broomfield, USA, (2011)Google Scholar
  15. 15.
    Niste, V.B., Tanaka, H., Ratoi, M., Sugimura, J.: WS2 nanoadditized lubricant for applications affected by hydrogen embrittlement. RSC Adv. 5(51), 40678–40687 (2015)CrossRefGoogle Scholar
  16. 16.
    Newlands, C., Olver, A., Brandon, N.: Gaseous evolution of hydrogen from hydrocarbon oil and grease lubricated contacts. Tribol. Ser. 41, 719–726 (2003)CrossRefGoogle Scholar
  17. 17.
    Han, B., Binns, J., Nedelcu, I.: In situ detection of hydrogen uptake from lubricated rubbing contacts. Tribol. Online 11(2), 450–454 (2016)CrossRefGoogle Scholar
  18. 18.
    Otsu, T., Tanaka, H., Ohnishi, K., Sugimura, J.: Simple experiment on permeation of hydrogen into steel in cyclic contact. Tribol. Online 6(7), 311–316 (2011)CrossRefGoogle Scholar
  19. 19.
    Ratoi, M., Niste, V.B., Walker, J., Zekonyte, J.: Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribol. Lett. 52(1), 81–91 (2013)CrossRefGoogle Scholar
  20. 20.
    Ratoi, M., Niste, V.B., Zekonyte, J.: WS2 nanoparticles—potential replacement for ZDDP and friction modifier additives. RSC Adv. 4(41), 21238–21245 (2014)CrossRefGoogle Scholar
  21. 21.
    Matsui, Y., Aoki, S., Kurosawa, O., Masuko, M.: Concert and blocking effects of polar compounds on the friction reduction and tribofilm formation of zinc dialkyldithiophosphate. Tribol. Online 11(2), 417–425 (2016)CrossRefGoogle Scholar
  22. 22.
    Tanimoto, H., Tanaka, H., Sugimura, J.: Observation of hydrogen permeation into fresh bearing steel surface by thermal desorption spectroscopy. Tribol. Online 6(7), 291–296 (2011)CrossRefGoogle Scholar
  23. 23.
    Ratoi, M., Niste, V.B., Alghawel, H., Suen, A., Nelson, K.: The impact of organic friction modifiers on engine oil tribofilms. RSC Adv. 4, 4278–4285 (2014)CrossRefGoogle Scholar
  24. 24.
    Spikes, H.: The history and mechanisms of ZDDP. Tribol. Lett. 17(3), 469–489 (2004)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.International Institute for Carbon-Neutral Energy ResearchKyushu UniversityFukuokaJapan
  2. 2.Research Centre for Hydrogen Industrial Use and StorageKyushu UniversityFukuokaJapan
  3. 3.Graduate School of EngineeringKyushu UniversityFukuokaJapan

Personalised recommendations