Experimental and Numerical Analysis of Soft Elastohydrodynamic Lubrication in Line Contact

  • 470 Accesses

  • 3 Citations


This paper describes an experimental setup that allows the observations of the stress distribution under soft elastohydrodynamic lubrication (EHL) in line contact by means of photoelasticity. This experimental method is rarely used in the EHL field. The photoelastic fringe patterns in the circular polarization are collected under different rolling speeds and loads. Numerical calculations are carried out to analyze the oil film thickness, pressure, and shear stress distribution. Compared with those results, numerical and experimental stress distribution are basically consistent. Some beneficial conclusions are obtained. These are helpful to investigate further the oil pressure distribution and directly observe the stress distribution under lubrication conditions through experiment method.

This is a preview of subscription content, log in to check access.

Access options

Buy single article

Instant unlimited access to the full article PDF.

US$ 39.95

Price includes VAT for USA

Subscribe to journal

Immediate online access to all issues from 2019. Subscription will auto renew annually.

US$ 199

This is the net price. Taxes to be calculated in checkout.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11


\(c\) :

Stress-optic coefficient

\(D\) :

Model thickness (mm)

\({\text{de}}(x)\) :

Total elastic deformation

\(E\) :

Equivalent Young’s modulus (Pa)

\(f_{\sigma }\) :

Material fringe value [N/(mm fringe)]

\(R\) :

Radius of cylinder (mm)

\(h\) :

Lubricant film thickness (μm)

\(I\) :

Light intensity of photoelasticity

\(M\) :

Bending moment (N/mm)

\(n\) :

Rotational speed (r/min)

\(N\) :

Fringe order number

\(\rho\) :

Density of fluid (kg/m3)

\(\rho_{0}\) :

Density of lubricant under ambient condition (kg/m3)

\(\eta\) :

Viscosity of fluid (Pa s)

\(\eta_{0}\) :

Viscosity of fluid under ambient condition (Pa s)

\(p\) :

Lubricant film pressure (Pa)

\(p_{0}\) :

Pressure–viscosity coefficient of lubricant (GPa)

\(u_{\text{s}}\) :

Sliding velocity (m/s)

\(v\) :

Poisson’s ration

\(w\) :

Applied load (N/mm)

\(x,z\) :

Dimensional Cartesian coordinates (mm)

\(\sigma ij\) :

Stress component (Pa)

\((\sigma_{1} - \sigma_{2} )\) :

The principal stress difference (Pa)

\(\tau\) :

Shear stress (Pa)

\(\delta\) :

Phase difference

\(\lambda\) :

Wavelength of light (nm)

\(\varOmega\) :

Calculation domain


  1. 1.

    Dowson, D.: Elastohydrodynamic and micro-elastohydrodynamic lubrication. Wear 190(2), 125–138 (1995)

  2. 2.

    Spikes, H.A.: Sixty years of EHL. Lubr. Sci. 18(4), 265–291 (2006)

  3. 3.

    Zhu, D., Wang, Q.J.: Elastohydrodynamic lubrication: a gateway to interfacial mechanics—review and prospect. ASME J. Tribol. 133(4), 041001-1–041001-14 (2011)

  4. 4.

    Bohan, M.F.J., Fox, I.J., Claypole, T.C., et al.: Numerical modelling of elastohydrodynamic lubrication in soft contacts using non-Newtonian fluids. Int. J. Numer. Methods Heat Fluid Flow 12(4), 494–511 (2002)

  5. 5.

    De Vicente, J., Stokes, J.R., Spikes, H.A.: The frictional properties of Newtonian fluids in rolling–sliding soft-EHL contact. Tribol. Lett. 20(3–4), 273–286 (2005)

  6. 6.

    Dearn, K.D., Hoskins, T.J., Andrei, L., et al.: Lubrication regimes in high-performance polymer spur gears. Adv. Tribol. (2013). doi:10.1155/2013/987251

  7. 7.

    Bongaerts, J.H.H., Day, J.P.R., Marriott, C., et al.: In situ confocal Raman spectroscopy of lubricants in a soft elastohydrodynamic tribological contact. J. Appl. Phys. 104(1), 014913-1–014913-10 (2008)

  8. 8.

    Gasni, D., Wan Ibrahim, M.K., Dwyer-Joyce, R.S.: Measurements of lubricant filmthickness in the iso-viscous elastohydrodynamic regime. Tribol. Int. 44, 933–944 (2011)

  9. 9.

    Myant, C., Fowell, M., Cann, P.: The effect of transient motion on Isoviscous-EHL films in compliant, point, contacts. Tribol. Int. 72, 98–107 (2014)

  10. 10.

    Fowell, M.T., Myant, C., Spikes, H.A., et al.: A study of lubricant film thickness in compliant contacts of elastomeric seal materials using a laser induced fluorescence technique. Tribol. Int. 80, 76–89 (2014)

  11. 11.

    Gohar, R., Cameron, A.: Optical measurement of oil film thickness under elastohydrodynamic lubrication. Nature 200, 458–459 (1963)

  12. 12.

    Cameron, A., Gohar, R.: Theoretical and experimental studies of the oil film in lubricated point contact. Proc. R. Soc. Lond. Ser. A 291, 520–536 (1966)

  13. 13.

    Johnston, G., Wayte, R., Spikes, H.: The measurement and study of very thin lubricant films in concentrated contacts. ASME. J. Tribol. 34, 187–194 (1991)

  14. 14.

    Luo, J., Wen, S., Huang, P.: Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear 194(1), 107–115 (1996)

  15. 15.

    Roberts, A.D., Tabor, D.: Fluid film lubrication of rubber—an interferometric study. Wear 11(2), 163–166 (1968)

  16. 16.

    Myant, C.W.: Experimental techniques for investigating lubricated, compliant contacts. Ph.D. thesis, Imperial College London (2010)

  17. 17.

    Marx, N., Guegan, J., Spikes, H.A.: Elastohydrodynamic film thickness of soft EHL contacts using optical interferometry. Tribol. Int. 99, 267–277 (2016)

  18. 18.

    Patterson, E.A.: Digital photoelasticity: principles, practice and potential. Strain 38(1), 27–39 (2002)

  19. 19.

    Ramesh, K., Kasimayan, T., Neethi, Simon B.: Digital photoelasticity—a comprehensive review. Strain Anal. 46, 245–266 (2011)

  20. 20.

    Solaguren-Beascoa, Fernández M.: Data acquisition techniques in photoelasticity. Exp. Tech. 35(6), 71–79 (2011)

  21. 21.

    Dally, J.W., Chen, Y.M.: A photoelastic study of friction at multipoint contacts. Exp. Mech. 31(2), 144–149 (1991)

  22. 22.

    Burguete, R.L., Patterson, E.A.: A photoelastic study of contact between a cylinder and a half-space. Exp. Mech. 37(3), 314–323 (1997)

  23. 23.

    Foust, B., Lesniak, J., Rowlands, R.: Determining individual stresses throughout a pinned aluminum joint by reflective photoelasticity. Exp. Mech. 51(9), 1441–1452 (2011)

  24. 24.

    Frankovský, P., Ostertag, O., Trebuňa, F., et al.: Methodology of contact stress analysis of gearwheel by means of experimental photoelasticity. Appl. Opt. 55(18), 4856–4864 (2016)

  25. 25.

    Klemz, B.L., Gohar, G., Cameron, A.: Photoelastic studies of lubricated line contacts. Proc. I.Mech.E. C39/91, 18–30 (1971)

  26. 26.

    Johnson, K.J.: Contact mechanics. Cambridge University Press, Cambridge (1985)

  27. 27.

    Wang, T., Wang, L., Gu, L., et al.: Numerical analysis of elastic coated solids in line contact. J. Cent. South Univ. 22(7), 2470–2481 (2015)

  28. 28.

    Ajovalasit, A., Petrucci, G., Scafidi, M.: Review of RGB photoelasticity. Opt. Lasers Eng. 68, 58–73 (2015)

Download references


The authors are grateful to acknowledge financial support by National Natural Science Foundation of China (Grant Nos: 51375167, 51575190).

Author information

Correspondence to Yanfei Fang.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (WMV 192 kb)

Supplementary material 2 (WMV 169 kb)

Supplementary material 3 (WMV 208 kb)

Supplementary material 1 (WMV 192 kb)

Supplementary material 2 (WMV 169 kb)

Supplementary material 3 (WMV 208 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fang, Y., He, J. & Huang, P. Experimental and Numerical Analysis of Soft Elastohydrodynamic Lubrication in Line Contact. Tribol Lett 65, 42 (2017).

Download citation


  • Soft elastohydrodynamic lubrication
  • Photoelasticity
  • Stress distribution