Tribology Letters

, 65:26 | Cite as

Influence of Tip Geometry on Nanoscratching

  • Iyad Alabd Alhafez
  • Alexander Brodyanski
  • Michael Kopnarski
  • Herbert M. Urbassek
Original Paper

Abstract

Using molecular dynamics simulation, we study the influence of the tip geometry on indentation and scratching. We focus on the specific case of an Fe (100) surface scratched in \([0{\bar{1}}{\bar{1}}]\) direction. Three indenter shapes—spherical, conical and Berkovich—are investigated; for the cone, the semi-apex angle \(\beta\) is varied systematically. For conical indenters, we find a clear dependence on the semi-apex angle \(\beta\): The friction coefficient decreases strongly with \(\beta\) in agreement with a simple analytical theory, while the hardness increases. For wider cones, the dislocation network under the groove increases in complexity. The pile-up produced outside the groove changes from a frontal to a lateral rim. The results for the Berkovich pyramid line up excellently with the cones if the traditional concept of an ‘equivalent cone angle’ is used. For the spherical indenter, however, we find deviations; it is not well described by its ‘equivalent cone angle.’ The sphere shows a smaller hardness and a higher friction coefficient than an equivalent cone. This finding quantifies the difference between blunt and sharp indenters in scratching.

Keywords

Molecular dynamics Nanoscratching Pile-up Iron Dislocations Plasticity Hardness 

References

  1. 1.
    Blau, P.J.: Friction Science and Technology. From Concepts to Applications, 2nd edn. CRC Press Taylor & Francis Group, Boca Raton (2009)Google Scholar
  2. 2.
    Mulliah, D., Kenny, S.D., McGee, E., Smith, R., Richter, A., Wolf, B.: Atomistic modelling of ploughing friction in silver, iron and silicon. Nanotechnology 17, 1807 (2006)CrossRefGoogle Scholar
  3. 3.
    Wredenberg, Fredrik, Larsson, Per-Lennart: Scratch testing of metals and polymers: experiments and numerics. Wear 266, 76 (2009)CrossRefGoogle Scholar
  4. 4.
    Williams, J.A.: Analytical models of scratch hardness. Tribol. Int. 29, 675–694 (1996). doi:10.1016/0301-679X(96)00014-X CrossRefGoogle Scholar
  5. 5.
    Bulsara, V.H., Chandrasekar, S., Farris, T.N.: Scratch testing. In: Kuhn, H., Medlin, D. (eds.) ASM Handbook Volume 8: Mechanical Testing and Evaluation, Chap.  29, p. 317. ASM International, (2000)Google Scholar
  6. 6.
    Tabor, D.: The physical meaning of indentation and scratch hardness. Brit. J. Appl. Phys. 7, 159 (1956)CrossRefGoogle Scholar
  7. 7.
    Bowden, F.P., Tabor, D.: Friction, lubrication and wear: a survey of work during the last decade. Brit. J. Appl. Phys. 17, 1521 (1966)CrossRefGoogle Scholar
  8. 8.
    Tabor, D.: The hardness of solids. Rev. Phys. Technol. 1, 145 (1970)CrossRefGoogle Scholar
  9. 9.
    Brookes, C.A., O’Neill, J.B., Redfern, B.A.W.: Anisotropy in the hardness of single crystals. Proc. R. Soc. London. Ser. A 322, 73 (1971)CrossRefGoogle Scholar
  10. 10.
    Brookes, C.A., Green, P.: Anisotropy in the scratch hardness of cubic crystals. Proc. R. Soc. Lond. A 368, 37 (1979)CrossRefGoogle Scholar
  11. 11.
    Komanduri, R., Chandrasekaran, N., Raff, L.M.: MD simulation of indentation and scratching of single crystal aluminum. Wear 240, 113 (2000)CrossRefGoogle Scholar
  12. 12.
    Mulliah, D., Christopher, D., Kenny, S.D., Smith, R.: Nanoscratching of silver (100) with a diamond tip. Nucl. Instrum. Meth. B 202, 294 (2003)CrossRefGoogle Scholar
  13. 13.
    Mulliah, D., Kenny, S.D., Smith, R., Sanz-Navarro, C.F.: Molecular dynamic simulations of nanoscratching of silver (100). Nanotechnology 15, 243 (2004)CrossRefGoogle Scholar
  14. 14.
    Jun, Sukky, Lee, Youngmin, Kim, Sung Youb, Im, Seyoung: Large-scale molecular dynamics simulations of Al(111) nanoscratching. Nanotechnology 15, 1169 (2004)CrossRefGoogle Scholar
  15. 15.
    Fang, Te-Hua, Liu, Chien-Hung, Shen, Siu-Tsen, Prior, S.D., Ji, Liang-Wen, Wu, Jia-Hung: Nanoscratch behavior of multi-layered films using molecular dynamics. Appl. Phys. A 90, 753 (2008)CrossRefGoogle Scholar
  16. 16.
    Zhang, J.J., Sun, T., Hartmaier, A., Yan, Y.D.: Atomistic simulation of the influence of nanomachining-induced deformation on subsequent nanoindentation. Comput. Mater. Sci. 59, 14–21 (2012)CrossRefGoogle Scholar
  17. 17.
    Lu, C., Gao, Y., Michal, G., Zhu, H., Huynh, N.N., Tieu, A.K.: Molecular dynamic simulation of effect of crystallographic orientation on nano-indentation/scratching behaviors of bcc iron. In: Luo, L., et al. (eds.) Advanced Tribology, pp. 562–563. Springer, Berlin (2010)CrossRefGoogle Scholar
  18. 18.
    Gao, Y., Ruestes, C.J., Urbassek, H.M.: Nanoindentation and nanoscratching of iron: atomistic simulation of dislocation generation and reactions. Comput. Mater. Sci. 90, 232–240 (2014)CrossRefGoogle Scholar
  19. 19.
    Gao, Yu., Brodyanski, Alexander, Kopnarski, Michael, Urbassek, Herbert M.: Nanoscratching of iron: a molecular dynamics study of the influence of surface orientation and scratching direction. Comput. Mater. Sci. 103, 77–89 (2015). doi:10.1016/j.commatsci.2015.03.011 CrossRefGoogle Scholar
  20. 20.
    Alabd Alhafez, I., Urbassek, H.M.: Scratching of hcp metals: a molecular-dynamics study. Comput. Mater. Sci. 113, 187–197 (2016). doi:10.1016/j.commatsci.2015.11.038 CrossRefGoogle Scholar
  21. 21.
    Gao, Y., Lu, C., Huynh, N.N., Michal, G., Zhu, H.T., Tieu, A.K.: Molecular dynamics simulation of effect of indenter shape on nanoscratch of Ni. Wear 267, 1998–2002 (2009)CrossRefGoogle Scholar
  22. 22.
    Sakharova, N.A., Fernandes, J.V., Antunes, J.M., Oliveira, M.C.: Comparison between Berkovich, Vickers and conical indentation tests: a three-dimensional numerical simulation study. Int. J. Solids Struct. 46, 1095–1104 (2009). doi:10.1016/j.ijsolstr.2008.10.032 CrossRefGoogle Scholar
  23. 23.
    Zhu, P., Hu, Y., Wang, H., Ma, T.: Study of effect of indenter shape in nanometric scratching process using molecular dynamics. Mat. Sci. Eng. A 528, 4522 (2011)CrossRefGoogle Scholar
  24. 24.
    Pfetzing-Micklich, J., Somsen, C., Dlouhy, A., Begau, C., Hartmaier, A., Wagner, M.F.X., Eggeler, G.: On the crystallographic anisotropy of nanoindentation in pseudoelastic NiTi. Acta Mater. 61, 602–616 (2013)CrossRefGoogle Scholar
  25. 25.
    Luan, B., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929 (2005)CrossRefGoogle Scholar
  26. 26.
    Begau, C.: Characterization of crystal defects during molecular dynamics simulations of mechanical deformation, Ph.D. thesis, Ruhr-Universität Bochum (2012)Google Scholar
  27. 27.
    Bowden, F.P., Tabor, D.: Friction and Lubrication of Solids. Clarendon Press, Oxford (1950)Google Scholar
  28. 28.
    Goddard, J., Wilman, H.: A theory of friction and wear during the abrasion of metals. Wear 5, 114–135 (1962). doi:10.1016/0043-1648(62)90235-1 CrossRefGoogle Scholar
  29. 29.
    Lafaye, S., Gauthier, C., Schirrer, R.: The ploughing friction: analytical model with elastic recovery for a conical tip with a blunted spherical extremity. Tribol. Lett. 21, 95–99 (2006). doi:10.1007/s11249-006-9018-7 CrossRefGoogle Scholar
  30. 30.
    Mishra, Maneesh, Szlufarska, Izabela: Analytical model for plowing friction at nanoscale. Tribol. Lett. 45, 417–426 (2012). doi:10.1007/s11249-011-9899-y CrossRefGoogle Scholar
  31. 31.
    Mishra, Maneesh, Egberts, Philip, Bennewitz, Roland, Szlufarska, Izabela: Friction model for single-asperity elastic-plastic contacts. Phys. Rev. B 86, 045452 (2012). doi:10.1103/PhysRevB.86.045452 CrossRefGoogle Scholar
  32. 32.
    Fischer-Cripps, A.C.: Nanoindentation, 2nd edn. Springer, New York (2004)CrossRefGoogle Scholar
  33. 33.
    Mendelev, M.I., Han, S., Srolovitz, D.J., Ackland, G.J., Sun, D.Y., Asta, M.: Development of new interatomic potentials appropriate for crystalline and liquid iron. Philos. Mag. 83, 3977–3994 (2003)CrossRefGoogle Scholar
  34. 34.
    Banerjee, Soumik, Naha, Sayangdev, Puri, Ishwar K.: Molecular simulation of the carbon nanotube growth mode during catalytic synthesis. Appl. Phys. Lett. 92, 233121 (2008)CrossRefGoogle Scholar
  35. 35.
    Ziegenhain, Gerolf, Urbassek, Herbert M., Hartmaier, Alexander: Influence of crystal anisotropy on elastic deformation and onset of plasticity in nanoindentation: a simulational study. J. Appl. Phys. 107, 061807 (2010)CrossRefGoogle Scholar
  36. 36.
    Plimpton, S.: Fast parallel algorithms for short-range molecular dynamics. J. Comput. Phys. 117, 1–19 (1995). http://lammps.sandia.gov/
  37. 37.
    Stukowski, Alexander, Albe, Karsten: Extracting dislocations and non-dislocation crystal defects from atomistic simulation data. Model. Simul. Mater. Sci. Eng. 18, 085001 (2010)CrossRefGoogle Scholar
  38. 38.
    Henderson, A.: Paraview guide, a parallel visualization application. Kitware Inc. (2007). http://www.paraview.org
  39. 39.
    Stukowski, A.: Visualization and analysis of atomistic simulation data with OVITO—the Open Visualization Tool. Model. Simul. Mater. Sci. Eng. 18, 015012 (2010). http://www.ovito.org/
  40. 40.
    Fischer-Cripps, A.C.: Critical review of analysis and interpretation of nanoindentation test data. Surf. Coat. Technol. 200, 4153–4165 (2006). doi:10.1016/j.surfcoat.2005.03.018 CrossRefGoogle Scholar
  41. 41.
    Chamani, H.R., Ayatollahi, M.R.: Equivalent cone apex angle of Berkovich indenter in face-forward and edge-forward nanoscratch. Wear 356–357, 53–65 (2016). doi:10.1016/j.wear.2016.03.005
  42. 42.
    Liang, H.Y., Wooy, C.H., Huang, Hanchen, Ngan, A.H.W., Yu, T.X.: Dislocation nucleation in the initial stage during nanoindentation. Philos. Mag. 83, 3609 (2003)CrossRefGoogle Scholar
  43. 43.
    Biener, Monika M., Biener, Juergen, Hodge, Andrea M., Hamza, Alex V.: Dislocation nucleation in bcc Ta single crystals studied by nanoindentation. Phys. Rev. B 76, 165422 (2007)CrossRefGoogle Scholar
  44. 44.
    Ispánovity, P.D., Laurson, L., Zaiser, M., Groma, I., Zapperi, S., Alava, M.J.: Avalanches in 2D dislocation systems: plastic yielding is not depinning. Phys. Rev. Lett. 112, 235501 (2014)CrossRefGoogle Scholar
  45. 45.
    Wagner, R.J., Ma, L., Tavazza, F., Levine, L.E.: Dislocation nucleation during nanoindentation of aluminum. J. Appl. Phys. 104, 114311 (2008). doi:10.1063/1.3021305 CrossRefGoogle Scholar
  46. 46.
    Ma, Li, Morris, Dylan J., Jennerjohn, Stefhanni L., Bahr, David F., Levine, Lyle E.: The role of probe shape on the initiation of metal plasticity in nanoindentation. Acta Mater. 60, 4729–4739 (2012). doi:10.1016/j.actamat.2012.05.026 CrossRefGoogle Scholar
  47. 47.
    Durst, K., Backes, B., Franke, O., Göken, M.: Indentation size effect in metallic materials: modeling strength from pop-in to macroscopic hardness using geometrically necessary dislocations. Acta Mater. 54, 2547–2555 (2006)CrossRefGoogle Scholar
  48. 48.
    Pharr, George M., Herbert, G., Gao, Yanfei: The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu. Rev. Mater. Res. 40, 271 (2010)CrossRefGoogle Scholar
  49. 49.
    Lodes, M.A., Hartmaier, A., Göken, M., Durst, K.: Influence of dislocation density on the pop-in behavior and indentation size effect in CaF2 single crystals: experiments and molecular dynamics simulations. Acta Mater. 59, 4264–4273 (2011)CrossRefGoogle Scholar
  50. 50.
    Gao, Yu., Ruestes, Carlos J., Tramontina, Diego R., Urbassek, Herbert M.: Comparative simulation study of the structure of the plastic zone produced by nanoindentation. J. Mech. Phys. Sol. 75, 58–75 (2015). doi:10.1016/j.jmps.2014.11.005 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Physics DepartmentUniversity KaiserslauternKaiserslauternGermany
  2. 2.Research Center OPTIMASUniversity KaiserslauternKaiserslauternGermany
  3. 3.Institut für Oberflächen- und Schichtanalytik IFOS GmbHKaiserslauternGermany

Personalised recommendations