Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

On the Contact Area of Nominally Flat Hertzian Contacts

  • 570 Accesses

  • 6 Citations

Abstract

In a recent paper, Pastewka and Robbins (Appl Phys Lett 108:221–601, 2016) state an analytical expression for the real contact area of a Hertzian tip with small-scale roughness. We confirm that their formula predicts real contact areas quite well—with less than 10 % error. Nonetheless, the complementary contact area does not show the proper scaling to the continuum results at large loads. This shortcoming is fixed in the present work by abandoning a mean-field approximation made in the original work. Analytical results can even be made essentially perfect with a relation giving the accurate dependence of contract area on pressure for contacts between solids with nominally flat surfaces.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. 1.

    Akarapu, S., Sharp, T., Robbins, M.O.: Stiffness of contacts between rough surfaces. Phys. Rev. Lett. 106, 204,301 (2011)

  2. 2.

    Almqvist, A., Campañá, C., Prodanov, N., Persson, B.N.J.: Interfacial separation between elastic solids with randomly rough surfaces: comparison between theory and numerical techniques. J. Mech. Phys. Solids 59, 2355–2369 (2011)

  3. 3.

    Bowden, F.P., Tabor, D.: Friction and Lubrication. Wiley, New York (1956)

  4. 4.

    Campañá, C., Müser, M.H.: Practical Green’s function approach to the simulation of elastic semi-infinite solids. Phys. Rev. B 74, 075,420 (2006)

  5. 5.

    Campañá, C., Müser, M.H.: Contact mechanics of real vs. randomly rough surfaces: a Green’s function molecular dynamics study. EPL 77, 38,005 (2007)

  6. 6.

    Campañá, C., Robbins, M.O., Müser, M.H.: Elastic contact between self-affine surfaces: comparison of numerical stress and contact correlation functions with analytic predictions. J. Phys. Condens. Matter 20, 354,013 (2008)

  7. 7.

    Cheng, S., Robbins, M.O.: Defining contact at the atomic scale. Tribol. Lett. 39, 329–348 (2010)

  8. 8.

    Dapp, W.B., Lücke, A., Persson, B.N.J., Müser, M.H.: Self-affine elastic contacts: percolation and leakage. Phys. Rev. Lett. 108, 244,301 (2012)

  9. 9.

    Dapp, W.B., Prodanov, N., Müser, M.H.: Systematic analysis of Persson’s contact mechanics theory of randomly rough elastic surfaces. J. Phys. Condens. Matter 226, 355,002 (2014)

  10. 10.

    Hertz, G.: Ueber die Berührung fester elastischer Körper. J. Reine Angew. Math. 92, 156–171 (1881)

  11. 11.

    Hu, X., Martini, A.: Atomistic simulation of the effect of roughness on nanoscale wear. Comput. Mater. Sci. 102, 208–212 (2015)

  12. 12.

    Hyun, S., Pei, L., Molinari, J.F., Robbins, M.O.: Finite-element analysis of contact between elastic self-affine surfaces. Phys. Rev. E 70, 026,117 (2004)

  13. 13.

    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (1985)

  14. 14.

    Karpov, E.G., Wagner, G.J., Liu, W.K.: A green’s function approach to deriving non-reflecting boundary conditions in molecular dynamics simulations. Int. J. Numer. Method Eng. 62(9), 1250–1262 (2005)

  15. 15.

    Luan, B.Q., Robbins, M.O.: The breakdown of continuum models for mechanical contacts. Nature 435, 929–932 (2005). doi:10.1038/nature03700

  16. 16.

    Manners, W., Greenwood, J.A.: Some observations on persson’s diffusion theory of elastic contact. Wear 261, 600–610 (2006). doi:10.1016/j.wear.2006.01.007

  17. 17.

    Mo, Y., Turner, K.T., Szlufarska, I.: Friction laws at the nanoscale. Nature 457, 1116–1119 (2009). doi:10.1038/nature07748

  18. 18.

    Mulakaluri, N., Persson, B.N.J.: Adhesion between elastic solids with randomly rough surfaces: comparison of analytical theory with molecular-dynamics simulations. EPL 96, 66,003 (2011)

  19. 19.

    Pastewka, L., Prodanov, N., Lorenz, B., Müser, M.H., Robbins, M.O., Persson, B.N.J.: Finite-size effects in contacts between self-affine surfaces. Phys. Rev. E 87, 062,809 (2013)

  20. 20.

    Pastewka, L., Robbins, M.O.: Contact area of rough spheres: large scale simulations and simple scaling laws. Appl. Phys. Lett. 108, 221,601 (2016). doi:10.1063/1.4950802

  21. 21.

    Pastewka, L., Sharp, T.A., Robbins, M.O.: Seamless elastic boundaries for atomistic calculations. Phys. Rev. B 86, 075,459 (2012)

  22. 22.

    Persson, B.N.J.: Theory of rubber friction and contact mechanics. J. Chem. Phys. 115, 3840–3861 (2001)

  23. 23.

    Persson, B.N.J.: Contact mechanics for randomly rough surfaces. Surf. Sci. Rep. 61, 201–227 (2006)

  24. 24.

    Persson, B.N.J.: On the elastic energy and stress correlation in the contact between elastic solids with randomly rough surfaces. J. Phys. Condens. Matter 20, 312,001 (2008)

  25. 25.

    Persson, B.N.J.: On the fractal dimension of rough surfaces. Tribol. Lett. 54, 99–106 (2014)

  26. 26.

    Persson, B.N.J., Yang, C.: Theory of the leak-rate of seals. J. Phys. Condens. Matter 20, 315,011 (2008)

  27. 27.

    Prodanov, N., Dapp, W.B., Müser, M.H.: On the contact area and mean gap of rough, elastic contacts: dimensional analysis, numerical corrections and reference data. Tribol. Lett. 53, 433–448 (2014)

  28. 28.

    Putignano, C., Afferrante, L., Carbone, G., Demelio, G.: The influence of the statistical properties of self-affine surfaces in elastic contacts: a numerical investigation. J. Mech. Phys. Sol. 60, 973–982 (2012)

  29. 29.

    Wenning, L., Müser, M.H.: Friction laws for elastic nanoscale contacts. Europhys. Lett. 54, 693–699 (2001). doi:10.1209/epl/i2001-00371-6

  30. 30.

    Yastrebov, V.A., Anciaux, G., Molinari, J.F.: From infinitesimal to full contact between rough surfaces: evolution of the contact area. Int. J. Solids Struct. 52, 83 (2015)

Download references

Acknowledgments

The author gratefully acknowledges computing time on JUQUEEN at the Jülich Supercomputing Centre and the Deutsche Forschungsgemeinschaft for support through Grant Mu 1694/5-1.

Author information

Correspondence to Martin H. Müser.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Müser, M.H. On the Contact Area of Nominally Flat Hertzian Contacts. Tribol Lett 64, 14 (2016). https://doi.org/10.1007/s11249-016-0750-3

Download citation

Keywords

  • Contact mechanics
  • Surface roughness
  • Analysis and models
  • Molecular dynamics