Tribology Letters

, 64:11 | Cite as

Highly Oriented MoS2 Coatings: Tribology and Environmental Stability

  • John F. Curry
  • Nicolas Argibay
  • Tomas Babuska
  • Brendan Nation
  • Ashlie Martini
  • Nicholas C. Strandwitz
  • Michael T. Dugger
  • Brandon A. Krick
Original Paper


Molybdenum disulfide (MoS2) coatings have been prepared via nitrogen (N2) spray deposition, a process which deliberately impinges particulates of MoS2 onto a substrate yielding a preferential basally oriented state. Adherent and highly oriented 100- to 300-nm-thick coatings were produced. These coatings exhibited lower initial friction coefficients than sputtered films in dry and humid environments. Such reductions likely stem from a higher degree of basal plane orientation throughout the film as confirmed by XRD. Initial friction in humid air for sprayed coatings (µ = 0.10) was half that of sputtered coatings (µ = 0.21), showing the ability of oriented surface films to produce a low shear strength interface. Aging of these coatings in a humid nitrogen environment also showed the propensity for the films to resist poisoning of their structure which could otherwise result in degraded tribological performance. These results also support the hypothesis that water vapor does not contribute to the oxidation of MoS2.


MoS2 Nitrogen spray Aging Roughness Friction Wear Oxidation Water vapor 



The authors would like to thank Sandia National Laboratories staff members Paul Kotula for acquisition of TEM images, Michael Rye for FIB sample preparation, and Bonnie McKenzie for SEM and EDS microscopy. We thank Lehigh University Tribology Lab members Mark Sidebottom and Guosong Zeng for discussions and help in setting up instrumentation. Sandia National Laboratories is a multi-mission laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under contract DE-AC04-94AL85000.


  1. 1.
    Fleischauer, P.D.: Effects of crystallite orientation on environmental stability and lubrication properties of sputtered MoS2 thin films. ASLE Trans. 27, 82–88 (1984)CrossRefGoogle Scholar
  2. 2.
    Lince, J.R., Fleischauer, P.D.: Crystallinity of rf-sputtered MoS2 films. J. Mater. Res. 2, 827–838 (1987)CrossRefGoogle Scholar
  3. 3.
    Holinski, R., Gänsheimer, J.: A study of the lubricating mechanism of molybdenum disulfide. Wear 19, 329–342 (1972)CrossRefGoogle Scholar
  4. 4.
    Singer, I.L., Washington, D.C.: Solid lubricating films for extreme environments. MRS Proc. 140, 215–226 (1988)CrossRefGoogle Scholar
  5. 5.
    Johnston, R.R.M., Moore, A.J.W.: The burnishing of molybdenum disulphide on to metal surfaces. Wear 7, 498–512 (1964)CrossRefGoogle Scholar
  6. 6.
    Salomon, G., De Gee, A.W.J., Zaat, J.H.: Mechano-chemical factors in MoS2-film lubrication. Wear 7, 87–101 (1964)CrossRefGoogle Scholar
  7. 7.
    Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10, 422–452 (1967)CrossRefGoogle Scholar
  8. 8.
    Make, D.D., Gao, C., Bredell, L., Kuhhnann-wilsdorf, D.: Micromechanics of MoS2 lubrication. Wear 164, 480–491 (1993)Google Scholar
  9. 9.
    Rapoport, L., Moshkovich, A., Perfilyev, V., Lapsker, I., Halperin, G., Itovich, Y., Etsion, I.: Friction and wear of MoS2 films on laser textured steel surfaces. Surf. Coat. Technol. 202, 3332–3340 (2008)CrossRefGoogle Scholar
  10. 10.
    Hilton, M.R., Bauer, R., Fleischauer, P.D.: Tribological performance and deformation of sputter-deposited MoS2 solid lubricant films during sliding wear and indentation contact. Thin Solid Films 188, 219–236 (1990)CrossRefGoogle Scholar
  11. 11.
    Spalvins, T.: Structure of sputtered molybdenum disulfide films at various substrate temperatures. ASLE Trans. 17, 1–7 (1974)CrossRefGoogle Scholar
  12. 12.
    Panitz, J., Pope, L.E., Hills, C.R., Lyons, J.E., Staley, D.J.: A statistical study of the combined effects of substrate temperature, bias, annealing and a Cr3Si2 undercoating on the tribological properties of rf sputtered MoS2 coatings. Thin Solid Films 154, 323–332 (1987)CrossRefGoogle Scholar
  13. 13.
    Panitz, J.K.G., Pope, L.E., Lyons, J.E., Staley, D.J.: The tribological properties of MoS2 coatings in vacuum, low relative humidity, and high relative humidity environments. J. Vac. Sci. Technol., A 6, 1166–1170 (1988)CrossRefGoogle Scholar
  14. 14.
    Bertrand, P.A.: Orientation of rf-sputter-deposited MoS2 films. J. Mater. Res. 4, 180–184 (1989)CrossRefGoogle Scholar
  15. 15.
    Muratore, C., Voevodin, A.A.: Control of molybdenum disulfide basal plane orientation during coating growth in pulsed magnetron sputtering discharges. Thin Solid Films 517, 5605–5610 (2009)CrossRefGoogle Scholar
  16. 16.
    Vierneusel, B., Schneider, T., Tremmel, S., Wartzack, S., Gradt, T.: Humidity resistant MoS2 coatings deposited by unbalanced magnetron sputtering. Surf. Coat. Technol. 235, 97–107 (2013)CrossRefGoogle Scholar
  17. 17.
    Moser, J., Liao, H., Levy, F.: Texture characterisation of sputtered MoS2 thin films by cross-sectional TEM analysis. J. Phys. D Appl. Phys. 23, 624–626 (1990)CrossRefGoogle Scholar
  18. 18.
    Scharf, T.W., Kotula, P.G., Prasad, S.V.: Friction and wear mechanisms in MoS2/Sb2O3/Au nanocomposite coatings. Acta Mater. 58, 4100–4109 (2010)CrossRefGoogle Scholar
  19. 19.
    Hilton, M.R., Bauer, R., Didziulis, S.V., Dugger, M.T., Keem, J.M., Scholhamer, J.: Structural and tribological studies of MoS2 solid lubricant films having tailored metal-multilayer nanostructures. Surf. Coat. Technol. 53, 13–23 (1992)CrossRefGoogle Scholar
  20. 20.
    Niederhauser, P., Hintermann, H.E., Maillat, M.: Moisture-resistant MoS2-based composite lubricant films. Thin Solid Films 108, 209–218 (1983)CrossRefGoogle Scholar
  21. 21.
    Zabinski, J.S., Donley, M.S., Walck, S.D., Schneider, T.R., Mcdevitt, N.T.: The effects of dopants on the chemistry and tribology of sputter-deposited MoS2 films. Tribol. Trans. 38, 894–904 (1995)CrossRefGoogle Scholar
  22. 22.
    Martin, J.M., Donnet, C., Le Mogne, T., Epicier, T.: Superlubricity of molybdenum disulphide. Phys. Rev. B: Condens. Matter 48, 10583–10586 (1993)CrossRefGoogle Scholar
  23. 23.
    Fleischauer, P.D., Hilton, M.R.: Applications of space tribology in the USA. Tribol. Int. 23, 135–139 (1990)CrossRefGoogle Scholar
  24. 24.
    Khare, H.S., Burris, D.L.: The effects of environmental water and oxygen on the temperature-dependent friction of sputtered molybdenum disulfide. Tribol. Lett. 52, 485–493 (2013)CrossRefGoogle Scholar
  25. 25.
    Khare, H.S., Burris, D.L.: Surface and subsurface contributions of oxidation and moisture to room temperature friction of molybdenum disulfide. Tribol. Lett. 53, 329–336 (2014)CrossRefGoogle Scholar
  26. 26.
    Dudder, G.J., Zhao, X., Krick, B., Sawyer, W.G., Perry, S.S.: Environmental effects on the tribology and microstructure of MoS2–Sb2O3–C films. Tribol. Lett. 42, 203–213 (2011)CrossRefGoogle Scholar
  27. 27.
    Ross, S., Sussman, A.: Surface oxidation of molybdenum disulfide. J. Phys. Chem. 59, 889–892 (1955)CrossRefGoogle Scholar
  28. 28.
    Johnston, R.M., Moore, A.J.W.: Water adsorption on molybdenum disulfide containing surface contaminants. J. Phys. Chem. 68, 3399–3406 (1964)CrossRefGoogle Scholar
  29. 29.
    Haltner, A.J., Oliver, C.S.: Effect of water vapor on friction of molybdenum disulfide. Ind. Eng. Chem. Fundam. 5, 348–355 (1966)CrossRefGoogle Scholar
  30. 30.
    Pritchard, C., Midgley, J.W.: The effect of humidity on the friction and life of unbonded molybdenum disulphide films. Wear 13, 39–50 (1969)CrossRefGoogle Scholar
  31. 31.
    Zhao, X., Perry, S.S.: The role of water in modifying friction within MoS2 sliding interfaces. ACS Appl. Mater. Interfaces 2, 1444–1448 (2010)CrossRefGoogle Scholar
  32. 32.
    Uemura, M., Saito, K., Nakao, K.: A mechanism of vapor effect on friction coefficient of molybdenum disulfide. Tribol. Trans. 33, 551–556 (1990)CrossRefGoogle Scholar
  33. 33.
    Hilton, M.R., Fleischauer, P.D.: Structural studies of sputter-deposited MoS2 solid lubricant films. MRS Proc. 140, 227–238 (1988)CrossRefGoogle Scholar
  34. 34.
    Fleischauer, P.D., Bauer, R.: The influence of surface chemistry on MoS2 transfer film formation. ASLE Trans. 30, 160–166 (1987)CrossRefGoogle Scholar
  35. 35.
    Aouadi, S.M., Paudel, Y., Luster, B., Stadler, S., Kohli, P., Muratore, C., Hager, C., Voevodin, A.A.: Adaptive Mo2N/MoS2/Ag tribological nanocomposite coatings for aerospace applications. Tribol. Lett. 29, 95–103 (2007)CrossRefGoogle Scholar
  36. 36.
    Baker, C.C., Chromik, R.R., Wahl, K.J., Hu, J.J., Voevodin, A.A.: Preparation of chameleon coatings for space and ambient environments. Thin Solid Films 515, 6737–6743 (2007)CrossRefGoogle Scholar
  37. 37.
    Voevodin, A.A., Zabinski, J.S.: Nanocomposite and nanostructured tribological materials for space applications. Compos. Sci. Technol. 65, 741–748 (2005)Google Scholar
  38. 38.
    Zabinski, J.S., Bultman, J.E., Sanders, J.H., Hu, J.J.: Multi-environmental lubrication performance and lubrication mechanism of MoS2/Sb2O3/C composite films. Tribol. Lett. 23, 155–163 (2006)CrossRefGoogle Scholar
  39. 39.
    Prasad, S.V., McDevitt, N.T., Zabinski, J.S.: Tribology of tungsten disulfide–nanocrystalline zinc oxide adaptive lubricant films from ambient to 500 °C. Wear 237, 186–196 (2000)CrossRefGoogle Scholar
  40. 40.
    Hu, J.J., Bultman, J.E., Zabinski, J.S.: Microstructure and lubrication mechanism of multilayered MoS2/Sb2O3 thin films. Tribol. Lett. 21, 169–174 (2006)CrossRefGoogle Scholar
  41. 41.
    Seitzman, L.E., Singer, I.L., Bolster, R.N., Gossett, C.R.: Effect of a titanium nitride interlayer on the endurance and composition of a molybdenum disulfide coating prepared by ion-beam-assisted deposition. Surf. Coat. Technol. 51, 232–236 (1992)CrossRefGoogle Scholar
  42. 42.
    Seitzman, L.E., Bolster, R.N., Singer, I.L., Wegand, J.C.: Relationship of endurance to microstructure of IBAD MoS2 coatings. Tribol. Trans. 38, 445–451 (1995)CrossRefGoogle Scholar
  43. 43.
    Stewart, T.B., Fleischauer, P.D.: Chemistry of sputtered molybdenum disulfide films. Inorg. Chem. 21, 2426–2431 (1982)CrossRefGoogle Scholar
  44. 44.
    Fleischauer, P.D.: Fundamental aspects of the electronic structure, materials properties and lubrication performance of sputtered MoS2 films. Thin Solid Films 154, 309–322 (1987)CrossRefGoogle Scholar
  45. 45.
    Krick, B.A., Vail, J.R., Persson, B.N.J., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding experiments. Tribol. Lett. 45, 185–194 (2011)CrossRefGoogle Scholar
  46. 46.
    Colbert, R.S., Krick, B.A., Dunn, A.C., Vail, J.R., Argibay, N., Sawyer, W.G.: Uncertainty in pin-on-disk wear volume measurements using surface scanning techniques. Tribol. Lett. 42, 129–131 (2011)CrossRefGoogle Scholar
  47. 47.
    Schmitz, T.L., Action, J.E., Burris, D.L., Ziegert, J.C., Sawyer, W.G.: Wear-rate uncertainty analysis. J. Tribol. 126, 802 (2004)CrossRefGoogle Scholar
  48. 48.
    Burris, D.L., Sawyer, W.G.: Addressing practical challenges of low friction coefficient measurements. Tribol. Lett. 35, 17–23 (2009)CrossRefGoogle Scholar
  49. 49.
    Stoyanov, P., Chromik, R.R., Goldbaum, D., Lince, J.R., Zhang, X.: Microtribological performance of Au–MoS2 and Ti–MoS2 coatings with varying contact pressure. Tribol. Lett. 40, 199–211 (2010)CrossRefGoogle Scholar
  50. 50.
    Singer, I.L., Bolster, R.N., Wegand, J., Fayeulle, S., Stupp, B.C.: Hertzian stress contribution to low friction behavior of thin MoS2 coatings. Appl. Phys. Lett. 57, 995–997 (1990)CrossRefGoogle Scholar
  51. 51.
    Scharf, T.W., Prasad, S.V.: Solid lubricants: a review. J. Mater. Sci. 48, 511–531 (2013)CrossRefGoogle Scholar
  52. 52.
    Archard, J.F., Hirst, W.: The wear of metals under unlubricated conditions. Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 236, 397–410 (1956)CrossRefGoogle Scholar
  53. 53.
    De Gee, A.W.J., Salomon, G., Zaat, J.H., Gee, D.A.W.J., Salomon, G., Zaat, J.H.: On the Mechanisms of MoS2-film failure in sliding friction. ASLE Trans. 8, 156–163 (1965)CrossRefGoogle Scholar
  54. 54.
    Ripoll, M.R., Simič, R., Brenner, J., Podgornik, B.: Friction and lifetime of laser surface-textured and MoS2-coated Ti6Al4V under dry reciprocating sliding. Tribol. Lett. 51, 261–271 (2013)CrossRefGoogle Scholar
  55. 55.
    Gardos, M.N.: The synergistic effects of graphite on the friction and wear of MoS2 films in air. Tribol. Trans. 31, 214–227 (1988)CrossRefGoogle Scholar
  56. 56.
    Spalvins, T.: Morphological and frictional behavior of sputtered MoS2 films. Thin Solid Films 96, 17–24 (1982)CrossRefGoogle Scholar
  57. 57.
    Spalvins, T.: Lubrication with sputtered MoS2 films: principles, operation, and limitations. JMEP 1, 347–351 (1991)CrossRefGoogle Scholar
  58. 58.
    Fleischauer, P.D., Bauer, R.: Chemical and structural effects on the lubrication properties of sputtered MoS2 films. Tribol. Trans. 31, 239–250 (1988)CrossRefGoogle Scholar
  59. 59.
    Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. Technol. 160, 282–287 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • John F. Curry
    • 1
  • Nicolas Argibay
    • 2
  • Tomas Babuska
    • 2
  • Brendan Nation
    • 2
  • Ashlie Martini
    • 3
  • Nicholas C. Strandwitz
    • 4
  • Michael T. Dugger
    • 2
  • Brandon A. Krick
    • 1
  1. 1.Department of Mechanical Engineering and MechanicsLehigh UniversityBethlehemUSA
  2. 2.Materials Science and Engineering CenterSandia National LaboratoriesAlbuquerqueUSA
  3. 3.Department of Mechanical EngineeringUniversity of California MercedMercedUSA
  4. 4.Department of Materials Science and EngineeringLehigh UniversityBethlehemUSA

Personalised recommendations