Advertisement

Tribology Letters

, 64:8 | Cite as

Neutralization Mechanism of Acetic Acid by Overbased Colloidal Nanoparticles

  • Yufei Duan
  • Riccardo Rausa
  • Qi Zhao
  • Kyriakos D. PapadopoulosEmail author
Original Paper

Abstract

The neutralization reaction mechanism of acetic acid by fully formulated lubricant oil is discussed in this paper. The video analysis of acetic-acid droplets in oil phase indicates that neutralization exists simultaneously on the oil–acid interface and bulk oil phase during the droplet shrinkage. This behavior is different from the one exhibited by sulfuric acid, which is insoluble in base oil and its neutralization by overbased lubricant occurs exclusively at the oil–acid interface. Besides, FTIR and NMR analyses show the neutralization of acetic acid as an instantaneous process, and almost all of the dissolved acetic acids in the bulk are eventually neutralized. Therefore, a two-mode-mechanism, including both interfacial and bulk reaction, is proposed for the neutralization of acetic acid by overbased nanoparticles. At the end, tribological behavior of sulfuric acid and acetic-acid neutralization products is discussed.

Keywords

Reaction mechanism Overbased detergent Acetic acid Neutralization Video microscopy 

Notes

Acknowledgments

The authors are grateful to Marco Lattuada, of Eni S.p.A., for the preparation of the fully formulated oil sample and for the helpful discussions. Support from Eni S.p.A. and Tulane’s Department of Chemical & Biomolecular Engineering made this work possible.

Supplementary material

11249_2016_742_MOESM1_ESM.docx (988 kb)
Supplementary material 1 (DOCX 988 kb)

Supplementary material 2 (AVI 5232 kb)

Supplementary material 3 (AVI 7726 kb)

Supplementary material 4 (AVI 10428 kb)

Supplementary material 5 (AVI 19002 kb)

References

  1. 1.
    Galsworthy, J., Hammond, S., Hone, D.: Oil-soluble colloidal additives. Curr. Opin. Colloid Interface 5(5), 274–279 (2000)CrossRefGoogle Scholar
  2. 2.
    Mitsutake, S., Ono, S., Maekawa, K., Takahashi, F., Deguchi, A.: Lubrication of cylinder liners and piston rings of low-speed marine diesel engines. Mitsubishi Tech. Rev. 24(2), 87–93 (1987)Google Scholar
  3. 3.
    Wilbur, C.T., Wight, D.: Pounder’s Marine Diesel Engines and Gas Turbines. Elsevier, Amsterdam (2013)Google Scholar
  4. 4.
    Hone, D.C., Robinson, B.H., Steytler, D.C., Glyde, R.W., Galsworthy, J.R.: Mechanism of acid neutralization by overbased colloidal additives in hydrocarbon media. Langmuir 16(2), 340–346 (2000)CrossRefGoogle Scholar
  5. 5.
    Hudson, L., Eastoe, J., Dowding, P.: Nanotechnology in action: Overbased nanodetergents as lubricant oil additives. Adv. Colloid Interface 123, 425–431 (2006)CrossRefGoogle Scholar
  6. 6.
    Wu, R.C., Papadopoulos, K.D., Campbell, C.B.: Visualization test for neutralization of acids by marine cylinder lubricants. AIChE J. 45(9), 2011–2017 (1999)CrossRefGoogle Scholar
  7. 7.
    Fu, J., Papadopoulos, K.D., Lu, Y., Campbell, C.B.: Ostwald ripening: a decisive cause of cylinder corrosive wear. Tribol. Lett. 27(1), 21–24 (2007)CrossRefGoogle Scholar
  8. 8.
    Akiyama, K., Masunaga, K., Kado, K., Yoshioka, T.: Cylinder wear mechanism in an EGR-equipped diesel engine and wear protection by the engine oil. SAE Technical Paper 872158 (1987)Google Scholar
  9. 9.
    Sudarshan, T., Bhaduri, S.: Wear in cylinder liners. Wear 91(3), 269–279 (1983)CrossRefGoogle Scholar
  10. 10.
    Jones, B., Mead, G., Steevens, P.: The effects of E20 on plastic automotive fuel system components. Minnesota Center Automotive Research Minnesota at State University, 11 (2008)Google Scholar
  11. 11.
    Hanson, N., Devens, T., Rohde, C., Larson, A., Mead, G., Steevens, P., Jones, B.: The effects of E20 on automotive fuel pumps and sending units. Minnesota Center Automotive Research Minnesota at State University, 12 (2008)Google Scholar
  12. 12.
    Renewable Fuels Association.: Accelerating idustry innovation: 2012 e Industry outlook. Renewable Fuels Association, Washington, DC (2012)Google Scholar
  13. 13.
    Kawamura, K., Kaplan, I.R.: Motor exhaust emissions as a primary source for dicarboxylic acids in Los Angeles ambient air. Environ. Sci. Technol. 21(1), 105–110 (1987)CrossRefGoogle Scholar
  14. 14.
    Souza, S.R., Vasconcellos, P.C., Carvalho, L.R.: Low molecular weight carboxylic acids in an urban atmosphere: winter measurements in Sao Paulo City Brazil. Atmos. Environ. 33(16), 2563–2574 (1999)CrossRefGoogle Scholar
  15. 15.
    Chebbi, A., Carlier, P.: Carboxylic acids in the troposphere, occurrence, sources, and sinks: a review. Atmos. Environ. 30(24), 4233–4249 (1996)CrossRefGoogle Scholar
  16. 16.
    Agarwal, A.K.: Biofuels (alcohols and biodiesel) applications as fuels for internal combustion engines. Prog. Energ. Combust. 33(3), 233–271 (2007)CrossRefGoogle Scholar
  17. 17.
    Corradi, M., Bomparola, R.: A lubricating oil composition comprising a corrosion inhibitor. Patent No. EP 2692839 A1 (2014)Google Scholar
  18. 18.
    Intermediate-level ethanol blends engine durability study. Coordinating Research Council (2012)Google Scholar
  19. 19.
    Mansot, J., Hallouis, M., Martin, J.: Colloidal antiwear additives 1. structural study of overbased calcium alkylbenzene sulfonate micelles. Colloid Surf. A 71(2), 123–134 (1993)CrossRefGoogle Scholar
  20. 20.
    Fu, J., Lu, Y., Campbell, C.B., Papadopoulos, K.D.: Acid neutralization by marine cylinder lubricants inside a heating capillary: strong/weak-stick collision mechanisms. Ind. Eng. Chem. Res. 45(16), 5619–5627 (2006)CrossRefGoogle Scholar
  21. 21.
    Costello, M., Riff, I.: Study of hydroforming lubricants with overbased sulfonates and friction modifiers. Tribol. Lett. 20(3–4), 201–208 (2005)CrossRefGoogle Scholar
  22. 22.
    Griffiths, J., Heyes, D.: Atomistic simulation of overbased detergent inverse micelles. Langmuir 12(10), 2418–2424 (1996)CrossRefGoogle Scholar
  23. 23.
    Cunningham, I.D., Courtois, J.-P., Danks, T.N., Heyes, D.M., Moreton, D.J., Taylor, S.E.: Synthesis and characterisation of calixarene-stabilised calcium carbonate overbased detergents. Colloid Surf. A 229(1), 137–147 (2003)CrossRefGoogle Scholar
  24. 24.
    Bearchell, C., Heyes, D.M., Moreton, D., Taylor, S.: Overbased detergent particles: experimental and molecular modelling studies. Phys. Chem. Chem. Phys. 3(21), 4774–4783 (2001)CrossRefGoogle Scholar
  25. 25.
    Adams, C.J., Dowding, P.J.: Overbased metal sulphonate detergent. Patent No. US 8,105,991 B2 (2012)Google Scholar
  26. 26.
    Brown, J.R., Adams, P.E., Carrick, V.A., Dohner, B.R., Abraham, W.D., Vilardo, J.S., Lange, R.M., Mosier, P.E.: Titanium compounds and complexes as additives in lubricants. Patent No. US 8,268,759 B2 (2012)Google Scholar
  27. 27.
    Wu, R.C., Campbell, C.B., Papadopoulos, K.D.: Acid-neutralizing of marine cylinder lubricants: effects of nonionic surfactants. Ind. Eng. Chem. Res. 39(10), 3926–3931 (2000)CrossRefGoogle Scholar
  28. 28.
    Duan, Y., Rausa, R., Fiaschi, P., Papadopoulos, K.D.: Neutralization of acetic acid by automobile motor oil. Tribol. Int. 98, 94–99 (2016)CrossRefGoogle Scholar
  29. 29.
    Griffiths, P.R., De Haseth, J.A.: Fourier Transform Infrared Spectrometry, vol. 171. Wiley, Hoboken (2007)CrossRefGoogle Scholar
  30. 30.
    Silverstein, R.M., Webster, F.X., Kiemle, D.J., Bryce, D.L.: Spectrometric Identification of Organic Compounds. Wiley, (2014)Google Scholar
  31. 31.
    Erhan, S.Z., Asadauskas, S.: Lubricant basestocks from vegetable oils. Ind. Crop. Prod 11(2–3), 277–282 (2000)CrossRefGoogle Scholar
  32. 32.
    Papay, A.G., Zaweski, E.F.: Lubricating oil composition. Patent No. US 4,178,258 A (1979)Google Scholar
  33. 33.
    Mortier, R.M., Orszulik, S.T., Fox, M.F.: Chemistry and Technology of Lubricants. Springer, London (1992)CrossRefGoogle Scholar
  34. 34.
    Duncan, P.B., Needham, D.: Microdroplet dissolution into a second-phase solvent using a micropipet technique: test of the Epstein–Plesset model for an aniline-water system. Langmuir 22(9), 4190–4197 (2006)CrossRefGoogle Scholar
  35. 35.
    Duncan, P.B., Needham, D.: Test of the Epstein–Plesset model for gas microparticle dissolution in aqueous media: effect of surface tension and gas undersaturation in solution. Langmuir 20(7), 2567–2578 (2004)CrossRefGoogle Scholar
  36. 36.
    Zhu, P., Harris, T.V., Driver, M.S., Campbell, C.B., Pratt, L.R., Papadopoulos, K.D.: Dissolution Kinetics of [Hmim][BF4] Ionic Liquid Droplets in 1-pentanol. J. Phys. Chem. C 113(37), 16458–16463 (2009)CrossRefGoogle Scholar
  37. 37.
    Garcia-Bermudes, M., Rausa, R., Papadopoulos, K.: Formation of colloidal shells on acidic droplets undergoing neutralization in marine diesel engine cylinder oils. Tribol. Lett. 51(1), 85–92 (2013)CrossRefGoogle Scholar
  38. 38.
    Lide, D.R.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2005)Google Scholar
  39. 39.
    Buhaug, Ø.: Deposit formation on cylinder liner surface in medium-speed engines. Dissertation, Norwegian University of Science and Technology (2003)Google Scholar
  40. 40.
    Buhaug, Ø., Almås, T.: Characterisation of diesel engine cylinder liner deposits by surface measurements. Tribotest 10(3), 207–223 (2004)CrossRefGoogle Scholar
  41. 41.
    Sautermeister, F.A., Priest, M.: Physical and chemical impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines. Tribol. Lett. 47(2), 261–271 (2012)CrossRefGoogle Scholar
  42. 42.
    Sautermeister, F., Priest, M., Lee, P., Fox, M.: Impact of sulphuric acid on cylinder lubrication for large 2-stroke marine diesel engines: contact angle, interfacial tension and chemical interaction. Tribol. Int. 59, 47–56 (2013)CrossRefGoogle Scholar
  43. 43.
    Hsu, C.-P.S.: Infrared spectroscopy. In: Handbook of Instrumental Techniques for Analytical Chemistry, p. 248 (1997)Google Scholar
  44. 44.
    Musumeci, A.W., Frost, R.L., Waclawik, E.R.: A spectroscopic study of the mineral paceite (calcium acetate). Spectrochim. Acta A 67(3), 649–661 (2007)CrossRefGoogle Scholar
  45. 45.
    Papke, B.L.: Neutralization of basic oil-soluble calcium sulfonates by carboxylic acids. Tribol T 31(4), 420–426 (1988)CrossRefGoogle Scholar
  46. 46.
    Jerome, P.: Stabilized suspensions of calcium acetate in oil. Patent No. US 2,989,464 A (1961)Google Scholar
  47. 47.
    Tobias, D.J., Klein, M.L.: Molecular dynamics simulations of a calcium carbonate/calcium sulfonate reverse micelle. J. Phys. Chem.-US 100(16), 6637–6648 (1996)CrossRefGoogle Scholar
  48. 48.
    Mansot, J., Hallouis, M., Martin, J.: Colloidal antiwear additives 2. Tribological behaviour of colloidal additives in mild wear regime. Colloid Surf. A 75, 25–31 (1993)CrossRefGoogle Scholar
  49. 49.
    Najman, M., Kasrai, M., Bancroft, G.M., Davidson, R.: Combination of ashless antiwear additives with metallic detergents: interactions with neutral and overbased calcium sulfonates. Tribol. Int. 39(4), 342–355 (2006)CrossRefGoogle Scholar
  50. 50.
    Stott, F., Macdonald, A.: The influence of acid strength on the corrosive wear of grey cast irons in oil-sulphuric acid mixtures. Wear 122(3), 343–361 (1988)CrossRefGoogle Scholar
  51. 51.
    Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38(3), 249–256 (2005)CrossRefGoogle Scholar
  52. 52.
    Priest, M., Taylor, C.: Automobile engine tribology-approaching the surface. Wear 241(2), 193–203 (2000)CrossRefGoogle Scholar
  53. 53.
    Wu, R.C., Papadopoulos, K.D., Campbell, C.B.: Acid-neutralizing of marine cylinder lubricants: measurements and effects of dispersants. AIChE J. 46(7), 1471–1477 (2000)CrossRefGoogle Scholar
  54. 54.
    Detweiler, W.K.: Calcium mixed-salt lubricant stabilized. Patent No. US 3,125,521 A (1964)Google Scholar
  55. 55.
    Morway, A.J.: Oil dispersions of calcium acetate hydrates. Patent No. US 2,927,892 A (1960)Google Scholar
  56. 56.
    James, N.: Calcium acetate lubricant. Patent No. US 3,310,490 A (1967)Google Scholar
  57. 57.
    Coant, P.M., De, M.F.G.A.: Lubricant and additives therefor. Patent No. US 3,259,577 A (1966)Google Scholar
  58. 58.
    Jesse, M.A., John, B.A.: Finely divided calcium acetate particles and lubricating compositions thereof. Patent No. US 3,231,495 A (1966)Google Scholar
  59. 59.
    Davis, R.H.: Lubricating oil compositions containing calcium acetate and lubricating solids. Patent No. US 3,194,760 A (1965)Google Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Yufei Duan
    • 1
  • Riccardo Rausa
    • 2
  • Qi Zhao
    • 3
  • Kyriakos D. Papadopoulos
    • 1
    Email author
  1. 1.Department of Chemical and Biomolecular EngineeringTulane UniversityNew OrleansUSA
  2. 2.Eni S.p.A. Upstream and Technical ServicesSan Donato Milanese Research CenterSan Donato MilaneseItaly
  3. 3.Department of ChemistryTulane UniversityNew OrleansUSA

Personalised recommendations