Tribology Letters

, 64:7 | Cite as

Real-Contact Area Between an Elastomer and a Flat Plane Observed by Surface Plasmon Resonance: Optical Model Calculations

  • Satoru Maegawa
  • Hiroshige Matsuoka
  • Shigehisa Fukui
  • Fumihiro Itoigawa
  • Takashi Nakamura
Original Paper

Abstract

This study presents a novel method for high-sensitivity measurement of the area of the real contact between an elastomer surface and a rigid flat plane, using the surface plasmon resonance (SPR) technique in the Kretschmann configuration. Through numerical calculations, the sensitivity of the SPR method for determining the real-contact area is discussed and compared to other typical optical techniques, such as total internal reflection and multiple beam optical interference. The wavelength dependence of the optical reflectance is simulated, as well as its change with the elastomer-plane gap thickness and the optical properties of the gap material. Non-transparent elastomers are also studied. Consequently, it was found that the SPR method has the highest sensitivity for the measurement of real-contact area; it can detect, for example, an ultra-thin air gap (or water gap) formed between the contacting surfaces from the measurement of the intensity of reflected light from the contact region.

Keywords

Real-contact area Surface plasmon resonance Soft elastomer Kretschmann configuration 

List of Symbols

Ein

Amplitude of the incident light electric field

Eout

Amplitude of the reflected light electric field

E+

Resultant electric vector of all positive-going light waves

E

Resultant electric vector of all negative-going light waves

N

Complex refractive index

R

Reflectance

ΔR

Difference in reflectance

h

Gap thickness

hmax

Maximum gap thickness

ld

Characteristic decay length of evanescent electromagnetic field

m

Sensitivity factor

n

Refractive index

neff

Effective refractive index

Δneff

Difference in effective refractive index

reff

Effective reflection coefficient

r

Fresnel reflection coefficient

k

Extinction coefficient

β

Phase change

θ

Incident angle

λ

Wavelength

λSPR

Resonance wavelength in the reflectance spectrum in the SPR method

λOIF

Peak wavelength in the reflectance spectrum in the OIF method

References

  1. 1.
    Liang, X., Linquing, Z.: A new method for the experimental investigation of contact in mixed lubrication. Matter 132, 221–233 (1989)Google Scholar
  2. 2.
    Eguchi, M., Shibamiya, T., Yamamoto, T.: Dynamic strain measurements in a sliding microstructured contact. J. Phys. Condens. Matter 20, 015004 (2008)CrossRefGoogle Scholar
  3. 3.
    Eguchi, M., Shibamiya, T., Yamamoto, T.: Measurement of real contact area and analysis of stick/slip region. Tribol. Int. 42, 1781–1791 (2009)CrossRefGoogle Scholar
  4. 4.
    Soneda, T., Nakano, K.: Investigation of vibrotactile sensation of human fingerpads by observation of contact zones. Tribol. Int. 43, 210–217 (2010)CrossRefGoogle Scholar
  5. 5.
    Krick, B.A., Hahn, D.W., Sawyer, W.G.: Optical in situ micro tribometer for analysis of real contact area for contact mechanics, adhesion, and sliding friction. Tribol. Lett. 45, 185–194 (2012)CrossRefGoogle Scholar
  6. 6.
    Nitta, I., Tsukiyama, Y., Tsukada, T., Terao, H.: Measurement of real contact area on thermal print head using a laser microscope with a wide field of view. Tribol. Int. 79, 162–173 (2014)CrossRefGoogle Scholar
  7. 7.
    Eason, E.V., Hawkes, E.W., Windheim, M., Christensen, D.L., Libby, T., Cutkosky, M.R.: Stress distribution and contact area measurements of a gecko toe using a high-resolution tactile sensor. Bioinspir. Biomim. 10, 016013 (2015)CrossRefGoogle Scholar
  8. 8.
    Matsuda, K., Hashimoto, D., Nakamura, K.: Real contact area and friction property of rubber with two-dimensional regular wavy surface. Tribol. Int. 93, 523–529 (2016)CrossRefGoogle Scholar
  9. 9.
    Holm, R.: Electric Contacts Handbook. Springer, Berlin (1958)Google Scholar
  10. 10.
    Nakano, K., Akiyama, Y.: Simultaneous measurement of thickness and coverage of loaded boundary films with complex impedance analysis. Tribol. Lett. 22, 127–134 (2006)CrossRefGoogle Scholar
  11. 11.
    Manabe, K., Nakano, K.: Breakdown of oil films and formation of residual films. Tribol. Int. 41, 1103–1113 (2008)CrossRefGoogle Scholar
  12. 12.
    Dwyer-Joyce, R.S., Reddyhoff, T., Drinkwater, B.W.: Operating limits for acoustic measurement of rolling bearing oil film thickness. Tribol. Trans. 47, 127–134 (2004)CrossRefGoogle Scholar
  13. 13.
    Dwyer-Joyce, R.S., Reddyhoff, T., Zhu, J.: Ultrasonic measurement for film thickness and solid contact in elastohydrodynamic lubrication. J. Tribol. 133, 031501 (2011)CrossRefGoogle Scholar
  14. 14.
    Rubinstein, S.M., Cohen, G., Fineberg, J.: Dynamics of precursors to frictional sliding. Phys. Rev. Lett. 98, 226103 (2007)CrossRefGoogle Scholar
  15. 15.
    Maegawa, S., Suzuki, A., Nakano, K.: Precursors of global slip in a longitudinal line contact under non-uniform normal loading. Tribol. Lett. 38, 313–323 (2010)CrossRefGoogle Scholar
  16. 16.
    Schallamach, A.: How does rubber slide? Wear 17, 301–302 (1971)CrossRefGoogle Scholar
  17. 17.
    Maegawa, S., Nakano, K.: Mechanism of stick-slip associated with Schallamach waves. Wear 268, 924–930 (2010)CrossRefGoogle Scholar
  18. 18.
    Maegawa, S., Itoigawa, F., Nakamura, T.: Dynamics in sliding friction of soft adhesive elastomer: Schallamach waves as a stress-relaxation mechanism. Tribol. Int. 96, 23–30 (2016)CrossRefGoogle Scholar
  19. 19.
    Maegawa, S., Yamaguchi, J., Itoigawa, F., Nakamura, T.: Discussion on surface plasmon resonance technique in the Otto configuration for measurement of lubricant film thickness. Tribol. Lett. 62, 14 (2016)CrossRefGoogle Scholar
  20. 20.
    Otto, A.: Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z. Phys. 216, 398–410 (1968)CrossRefGoogle Scholar
  21. 21.
    Kretschmann, E.: The determination of the optical constants of metals by excitation of surface plasmons. Z. Phys. 241, 313–324 (1971)CrossRefGoogle Scholar
  22. 22.
    Raether, H.: Surface plasmons on smooth and rough surfaces and on gratings. Springer, Berlin (1988)Google Scholar
  23. 23.
    Jung, L.S., Campbell, C.T., Chinowsky, T.M., Mar, M.N.: Quantitative interpretation of the response of surface plasmon resonance sensors to adsorbed films. Langmuir 14, 5636–5648 (1998)CrossRefGoogle Scholar
  24. 24.
    Heavens, O.S.: Optical Properties of Thin Solid Films. Dover Publications, New York (1991)Google Scholar
  25. 25.
    Born, M., Wolf, E.: Principle of Optics, Electromagnetic Theory of Propagation, Interference and Diffraction of Light, 6th edn. Cambridge University Press, Cambridge (1997)Google Scholar
  26. 26.
    Macleod, H.A.: Thin-film Optical Filters, 3rd edn. Institute of Physics Publishing, Bristol (2001)CrossRefGoogle Scholar
  27. 27.
    Fu, Z., Guo, F., Wong, P.L.: Theoretical study on the interferometry of thin EHL film measurement. Tribol. Lett. 31, 57–65 (2008)CrossRefGoogle Scholar
  28. 28.
  29. 29.
    Cudek, V., Krupka, I., Hartl, M.L.: Application of spectroscopic reflectometry to elastohydrodynamic lubrication film study. Tribol. Lett. 45, 195–205 (2012)CrossRefGoogle Scholar
  30. 30.
    Maegawa, S., Koseki, A., Itoigawa, F., Nakamura, T.: In situ observation of adsorbed fatty acid films under shearing condition using surface plasmon resonance. Tribol. Int. 97, 228–233 (2016)CrossRefGoogle Scholar
  31. 31.
    Haeussling, L., Ringsdorf, H., Schmitt, F.J., Knoll, W.: Biotin-functionalized self-assembled monolayers on gold: surface plasmon optical studies of specific recognition reactions. Langmuir 7, 1837–1840 (1991)CrossRefGoogle Scholar
  32. 32.
    Peterlinz, K.P., Georgiadis, R.C.: Two-color approach for determination of thickness and dielectric constant of thin films using surface plasmon resonance spectroscopy. Opt. Commun. 130, 260–266 (1996)CrossRefGoogle Scholar
  33. 33.
    Bruijn, H.E.B., Altenburg, B.S.F., Kooyman, R.P.H., Greve, J.: Determination of thickness and dielectric constant of thin transparent dielectric layers using surface plasmon resonance. Opt. Commun. 82, 425–432 (1991)CrossRefGoogle Scholar
  34. 34.
    Le Ru, E.C., Etchegoin, P.G.: Principles of Surface Enhanced Raman Spectroscopy and Related Plasmonic Effects. Elsevier, Amsterdam (2009)Google Scholar
  35. 35.
    Westphal, P., Bornmann, A.: Biomolecular detection by surface plasmon enhanced ellipsometry. Sens. Actuators B 84, 278–282 (2002)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  • Satoru Maegawa
    • 1
  • Hiroshige Matsuoka
    • 1
  • Shigehisa Fukui
    • 1
  • Fumihiro Itoigawa
    • 2
  • Takashi Nakamura
    • 2
  1. 1.Department of Mechanical and Aerospace EngineeringTottori UniversityTottoriJapan
  2. 2.Department of Mechanical EngineeringNagoya Institute of TechnologyNagoyaJapan

Personalised recommendations