Tribology Letters

, 62:1 | Cite as

Sliding Without Slipping Under Coulomb Friction: Opening Waves and Inversion of Frictional Force

Original Paper

Abstract

An elastic layer slides on a rigid flat governed by Coulomb’s friction law. We demonstrate that if the coefficient of friction is high enough, the sliding localizes within stick–slip pulses, which transform into opening waves propagating at intersonic speed in the direction of sliding or, for high Poisson’s ratios, at supersonic speed in the opposite direction. This sliding mode, characterized by marginal frictional dissipation, and similar to carpet fold propagation, may result in inversion of the frictional force direction; at longer time intervals, the system demonstrates stick–slip behavior. The mechanism is described in detail, and a parametric study is presented.

Keywords

Friction Slip pulses Opening waves Supersonic pulses Negative friction 

Notes

Acknowledgments

The author is grateful to David S. Kammer and Jean-Pierre Vilotte for valuable discussions.

Supplementary material

11249_2016_650_MOESM1_ESM.avi (4.7 mb)
Supplementary material 1 (avi 4799 KB)

References

  1. 1.
    Adams, G.G.: Steady sliding of two elastic half-spaces with friction reduction due to interface stick-slip. J. Appl. Mech. 65(2), 470–475 (1998)CrossRefGoogle Scholar
  2. 2.
    Adams, G.G.: Radiation of body waves induced by the sliding of an elastic half-space against a rigid surface. J. Appl. Mech. 67(1), 1–5 (2000)CrossRefGoogle Scholar
  3. 3.
    Adams, G.G.: Self-excited oscillations of two elastic half-spaces sliding with a constant coefficient of friction. J. Appl. Mech. 62(4), 867–872 (1995)CrossRefGoogle Scholar
  4. 4.
    Anderson, A., Knapp, R.: Hot spotting in automotive friction systems. Wear 135(2), 319–337 (1990)CrossRefGoogle Scholar
  5. 5.
    Andrews, D.: Rupture propagation with finite stress in antiplane strain. J. Geophys. Res. Solid Earth 81(20), 3575–3582 (1976)CrossRefGoogle Scholar
  6. 6.
    Andrews, D., Ben-Zion, Y.: Wrinkle-like slip pulse on a fault between different materials. J. Geophys. Res. Solid Earth 102(B1), 553–571 (1997)CrossRefGoogle Scholar
  7. 7.
    Barquins, M.: Sliding friction of rubber and Schallamach waves—a review. Mater. Sci. Eng. 73, 45–63 (1985)CrossRefGoogle Scholar
  8. 8.
    Baumberger, T., Caroli, C., Ronsin, O.: Self-healing slip pulses along a gel/glass interface. Phys. Rev. Lett. 88(7), 075509 (2002)CrossRefGoogle Scholar
  9. 9.
    Ben-David, O., Cohen, G., Fineberg, J.: The dynamics of the onset of frictional slip. Science 330(6001), 211 (2010)CrossRefGoogle Scholar
  10. 10.
    Ben-David, O., Fineberg, J.: Static friction coefficient is not a material constant. Phys. Rev. Lett. 106(25), 254301 (2011)CrossRefGoogle Scholar
  11. 11.
    Ben-Zion, Y., Huang, Y.: Dynamic rupture on an interface between a compliant fault zone layer and a stiffer surrounding solid. J. Geophys. Res. Solid Earth 107(B2), ESE-6 (2002)Google Scholar
  12. 12.
    Besson, J., Foerch, R.: Large scale object-oriented finite element code design. Comput. Methods Appl. Mech. Eng. 142, 165–187 (1997)CrossRefGoogle Scholar
  13. 13.
    Bui, H.D., Oueslati, A.: On the stick-slip waves under unilateral contact and coulomb friction. Ann. Solid Struct. Mech. 1(3–4), 159–172 (2010)CrossRefGoogle Scholar
  14. 14.
    Carpinteri, A., Paggi, M.: Size-scale effects on the friction coefficient. Int. J. Solids Struct. 42(9), 2901–2910 (2005)CrossRefGoogle Scholar
  15. 15.
    Cochard, A., Rice, J.R.: Fault rupture between dissimilar materials: Ill-posedness, regularization, and slip-pulse response. J. Geophys. Res. Solid Earth 105(25), 891 (2000)Google Scholar
  16. 16.
    Coker, D., Lykotrafitis, G., Needleman, A., Rosakis, A.: Frictional sliding modes along an interface between identical elastic plates subject to shear impact loading. J. Mech. Phys. Solids 53(4), 884–922 (2005)CrossRefGoogle Scholar
  17. 17.
    Coker, D., Rosakis, A.J., Needleman, A.: Dynamic crack growth along a polymer composite–Homalite interface. J. Mech. Phys. Solids 51(3), 425–460 (2003)CrossRefGoogle Scholar
  18. 18.
    Comninou, M., Dundurs, J.: Elastic interface waves involving separation. J. Appl. Mech. 44(2), 222–226 (1977)CrossRefGoogle Scholar
  19. 19.
    Comninou, M., Dundurs, J.: Can two solids slide without slipping? Int. J. Solids Struct. 14(4), 251–260 (1978)CrossRefGoogle Scholar
  20. 20.
    Finite element software Z-set: www.zset-software.com
  21. 21.
    Francavilla, A., Zienkiewicz, O.C.: A note on numerical computation of elastic contact problems. Int. J. Numer. Meth. Eng. 9, 913–924 (1975)CrossRefGoogle Scholar
  22. 22.
    Freund, L.: Discussion: ”Elastic interface waves involving separation“ (Comninou, M., and Dundurs, J., 1977, ASME J. Appl. Mech., 44, pp. 222–226). J. Appl. Mech. 45(1), 226–227 (1978)Google Scholar
  23. 23.
    Gent, A.: Friction and wear of highly-elastic solids. Wear 29(1), 111–116 (1974)CrossRefGoogle Scholar
  24. 24.
    Gerde, E., Marder, M.: Friction and fracture. Nature 413(6853), 285–288 (2001)CrossRefGoogle Scholar
  25. 25.
    Heaton, T.H.: Evidence for and implications of self-healing pulses of slip in earthquake rupture. Phys. Earth Planet. Inter. 64(1), 1–20 (1990)CrossRefGoogle Scholar
  26. 26.
    Hilber, H.M., Hughes, T.J., Taylor, R.L.: Improved numerical dissipation for time integration algorithms in structural dynamics. Earthq. Eng. Struct. Dyn. 5(3), 283–292 (1977)CrossRefGoogle Scholar
  27. 27.
    Jean, M.: Frictional contact in collections of rigid or deformable bodies: numerical simulation of geomaterial motions. Mech. Geomater. Interfaces 42, 463–486 (1995)CrossRefGoogle Scholar
  28. 28.
    Kammer, D.S., Radiguet, M., Ampuero, J.P., Molinari, J.F.: Linear elastic fracture mechanics predicts the propagation distance of frictional slip. Tribol. Lett. 57(3), 1–10 (2015)CrossRefGoogle Scholar
  29. 29.
    Kammer, D.S., Yastrebov, V.A., Anciaux, G., Molinari, J.F.: The existence of a critical length scale in regularised friction. J. Mech. Phys. Solids 63, 40–50 (2014)CrossRefGoogle Scholar
  30. 30.
    Kammer, D.S., Yastrebov, V.A., Spijker, P., Molinari, J.F.: On the propagation of slip fronts at frictional interfaces. Tribol. Lett. 48(1), 27–32 (2012)CrossRefGoogle Scholar
  31. 31.
    Kawamura, H., Hatano, T., Kato, N., Biswas, S., Chakrabarti, B.K.: Statistical physics of fracture, friction, and earthquakes. Rev. Mod. Phys. 84(2), 839 (2012)CrossRefGoogle Scholar
  32. 32.
    Lakes, R., Lee, T., Bersie, A., Wang, Y.: Extreme damping in composite materials with negative-stiffness inclusions. Nature 410(6828), 565–567 (2001)CrossRefGoogle Scholar
  33. 33.
    Liu, C., Huang, Y., Rosakis, A.J.: Shear dominated transonic interfacial crack growth in a bimaterial i–ii. asymptotic fields and favorable velocity regimes. J. Mech. Phys. Solids 43(2), 189–206 (1995)CrossRefGoogle Scholar
  34. 34.
    Martins, J., Guimaraes, J., Faria, L.: Dynamic surface solutions in linear elasticity and viscoelasticity with frictional boundary conditions. J. Vib. Acoust. 117(4), 445–451 (1995)CrossRefGoogle Scholar
  35. 35.
    Moirot, F., Nguyen, Q.S., Oueslati, A.: An example of stick-slip and stick-slip-separation waves. Eur. J. Mech. A. Solids 22(1), 107–118 (2003)CrossRefGoogle Scholar
  36. 36.
    Müser, M.H., Wenning, L., Robbins, M.O.: Simple microscopic theory of Amontons’s laws for static friction. Phys. Rev. Lett. 86(7), 1295 (2001)CrossRefGoogle Scholar
  37. 37.
    Palmer, A.C., Rice, J.: The growth of slip surfaces in the progressive failure of over-consolidated clay. In: Proceedings of the Royal Society of London. Series A: Mathematical and physical sciences, vol. 332, pp. 527–548. The Royal Society (1973)Google Scholar
  38. 38.
    Prakash, V., Clifton, R.J.: Time resolved dynamic friction measurements in pressure-shear. In: K. Ramesh (ed.) Experimental Techniques in the Dynamics of Deformable Solids, AMD-vol. 165, pp. 33–48. ASME, New York (1993)Google Scholar
  39. 39.
    Ranjith, K., Rice, J.R.: Slip dynamics at an interface between dissimilar materials. J. Mech. Phys. Solids 49(2), 341–361 (2001)CrossRefGoogle Scholar
  40. 40.
    Renardy, M.: Ill-posedness at the boundary for elastic solids sliding under coulomb friction. J. Elast. 27(3), 281 (1992)CrossRefGoogle Scholar
  41. 41.
    Rice, J.R.: Constitutive relations for fault slip and earthquake instabilities. Pure Appl. Geophys. 121(3), 443–475 (1983)CrossRefGoogle Scholar
  42. 42.
    Radiguet, M., Kammer, D.S., Gillet, P., Molinari, J.F.: Survival of heterogeneous stress distributions created by precursory slip at frictional interfaces. Phys. Rev. Lett. 111(16), 164302 (2013)CrossRefGoogle Scholar
  43. 43.
    Schallamach, A.: How does rubber slide? Wear 17(4), 301–312 (1971)CrossRefGoogle Scholar
  44. 44.
    Scholz, C.H.: The Mechanics of Earthquakes and Faulting. Cambridge University Press, Cambridge (2002)CrossRefGoogle Scholar
  45. 45.
    Sørensen, M.R., Jacobsen, K.W., Stoltze, P.: Simulations of atomic-scale sliding friction. Phys. Rev. B 53(4), 2101–2113 (1996)CrossRefGoogle Scholar
  46. 46.
    Supplemental material: animation of formation of the stick-slip and stick-slip-opening pulseGoogle Scholar
  47. 47.
    Svetlizky, I., Fineberg, J.: Classical shear cracks drive the onset of dry frictional motion. Nature 509(7499), 205–208 (2014)CrossRefGoogle Scholar
  48. 48.
    Urbakh, M., Klafter, J., Gourdon, D., Israelachvili, J.: The nonlinear nature of friction. Nature 430(6999), 525–528 (2004)CrossRefGoogle Scholar
  49. 49.
    Weertman, J.: Unstable slippage across a fault that separates elastic media of different elastic constants. J. Geophys. Res. Solid Earth 85(B3), 1455–1461 (1980)CrossRefGoogle Scholar
  50. 50.
    Wriggers, P.: Computational Contact Mechanics, 2nd edn. Springer, Berlin (2006)CrossRefGoogle Scholar
  51. 51.
    Xia, K., Rosakis, A.J., Kanamori, H.: Laboratory earthquakes: the sub-rayleigh-to-supershear rupture transition. Science 303(5665), 1859–61 (2004)CrossRefGoogle Scholar
  52. 52.
    Yastrebov, V.A.: Numerical Methods in Contact Mechanics. ISTE/Wiley, New York (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.MINES ParisTech, PSL Research University, Centre for Material Sciences, CNRS UMR 7633EvryFrance

Personalised recommendations