Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Tribological Properties of Oleylamine-Modified Ultrathin WS2 Nanosheets as the Additive in Polyalpha Olefin Over a Wide Temperature Range

  • 681 Accesses

  • 15 Citations


Ultrathin WS2 nanosheets modified by oleylamine (OM) were prepared via a solution-phase method at a relatively high temperature of 300 °C. The thermal stability of the as-prepared WS2 nanosheets was evaluated by thermogravimetric analysis. The tribological properties of as-synthesized WS2 nanosheets as the additive in polyalpha olefin (PAO6) were evaluated with a four-ball machine and a reciprocating tribometer over a wide temperature range from room temperature to 200 °C. The morphology and elemental composition of worn steel surfaces were analyzed with a scanning electron microscope, a three-dimensional optical profiler, an energy dispersive spectrometer and an X-ray photoelectron spectroscope. Results show that OM as the modifier is able to improve the dispersibility of WS2 nanosheets in PAO6 base oil. At a mass fraction of 2.0 % in PAO6 base oil, as-synthesized WS2 nanosheets exhibit excellent antiwear and friction-reducing performance over the selected temperature range. This is because as-synthesized WS2 nanosheets as the additive in PAO6 are able to form adsorbed film with a low shear force and tribochemical reaction film composed of W, Fe and O elements on the worn steel surface.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25


  1. 1.

    Amiri, M., Khonsari, M.M.: On the thermodynamics of friction and wear: a review. Entropy 12(5), 1021–1049 (2010). doi:10.3390/e12051021

  2. 2.

    Mo, Y., Tao, D., Wei, X., Li, Q.: Research on friction-coatings with activated ultra-thick tin-base. In: Luo, J., Meng, Y., Shao, T., Zhao, Q. (eds.) Advanced Tribology, pp. 915–919. Springer, Berlin Heidelberg (2010)

  3. 3.

    Huang, H., Hu, H., Qiao, S., Bai, L., Han, M., Liu, Y., Kang, Z.: Carbon quantum dot/CuS x nanocomposites towards highly efficient lubrication and metal wear repair. Nanoscale 7(26), 11321–11327 (2015). doi:10.1039/C5NR01923K

  4. 4.

    Chen, Y., Zhang, Y., Zhang, S., Yu, L., Zhang, P., Zhang, Z.: Preparation of nickel-based nanolubricants via a facile in situ one-step route and investigation of their tribological properties. Tribol. Lett. 51(1), 73–83 (2013). doi:10.1007/s11249-013-0148-4

  5. 5.

    Yang, G., Zhang, Z., Zhang, S., Yu, L., Zhang, P., Hou, Y.: Preparation and characterization of copper nanoparticles surface-capped by alkanethiols. Surf. Interface Anal. 45(11–12), 1695–1701 (2013). doi:10.1002/sia.5309

  6. 6.

    Yang, G., Chai, S., Xiong, X., Zhang, S., Yu, L., Zhang, P.: Preparation and tribological properties of surface modified Cu nanoparticles. Trans. Nonferr. Meta. Soc. China 22(2), 366–372 (2012). doi:10.1016/S1003-6326(11)61185-0

  7. 7.

    Ingole, S., Charanpahari, A., Kakade, A., Umare, S.S., Bhatt, D.V., Menghani, J.: Tribological behavior of nano TiO2 as an additive in base oil. Wear 301, 776–785 (2013). doi:10.1016/j.wear.2013.01.037

  8. 8.

    Ye, P., Jiang, X., Li, S., Li, S.: Preparation of NiMoO2S2 nanoparticle and investigation of its tribological behavior as additive in lubricating oils. Wear 253(2), 572–575 (2002). doi:10.1016/S0043-1648(02)00042-X

  9. 9.

    Zhang, Z., Xue, Q., Liu, W.: Study on lubricating mechanisms of La(OH)3 nanocluster modified by compound containing nitrogen in liquid paraffin. Wear 218(2), 139–144 (1998). doi:10.1016/S0043-1648(98)00225-7

  10. 10.

    Chen, S., Liu, W., Yu, L.: Preparation of DDP-coated PbS nanoparticles and investigation of the antiwear ability of the prepared nanoparticles as additive in liquid paraffin. Wear 218(2), 153–158 (1998). doi:10.1016/S0043-1648(98)00220-8

  11. 11.

    Winer, W.O.: Molybdenum disulfide as a lubricant: a review of the fundamental knowledge. Wear 10(6), 422–452 (1967). doi:10.1016/0043-1648(67)90187-1

  12. 12.

    Drummond, C., Alcantar, N., Israelachvili, J., Tenne, R., Golan, Y.: Microtribology and friction-induced material transfer in WS2 nanoparticle additives. Adv. Funct. Mater. 11(5), 348–354 (2001). doi:10.1002/1616-3028(200110)11:5<348:AID-ADFM348>3.0.CO;2-S

  13. 13.

    Ratoi, M., Niste, V., Walker, J., Zekonyte, J.: Mechanism of action of WS2 lubricant nanoadditives in high-pressure contacts. Tribol. Lett. 52(1), 81–91 (2013). doi:10.1007/s11249-013-0195-x

  14. 14.

    Aldana, P., Vacher, B., Le Mogne, T., Belin, M., Thiebaut, B., Dassenoy, F.: Action mechanism of WS2 nanoparticles with ZDDP additive in boundary lubrication regime. Tribol. Lett. 56(2), 249–258 (2014). doi:10.1007/s11249-014-0405-1

  15. 15.

    Ratoi, M., Niste, V.B., Zekonyte, J.: WS2 nanoparticles—potential replacement for ZDDP and friction modifier additives. RSC Adv. 4(41), 21238–21245 (2014). doi:10.1039/C4RA01795A

  16. 16.

    Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultralow-friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18(4), 477–485 (2005). doi:10.1007/s11249-005-3607-8

  17. 17.

    Greenberg, R., Halperin, G., Etsion, I., Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17(2), 179–186 (2004). doi:10.1023/B:TRIL.0000032443.95697.1d

  18. 18.

    Rapoport, L., Leshchinsky, V., Lapsker, I., Volovik, Y., Nepomnyashchy, O., Lvovsky, M., Popovitz-Biro, R., Feldman, Y., Tenne, R.: Tribological properties of WS2 nanoparticles under mixed lubrication. Wear 255(7–12), 785–793 (2003). doi:10.1016/S0043-1648(03)00044-9

  19. 19.

    Rapoport, L., Lvovsky, M., Lapsker, I., Leshchinsky, W., Volovik, Y., Feldman, Y., Tenne, R.: Friction and wear of bronze powder composites including fullerene-like WS2 nanoparticles. Wear 249(1–2), 149–156 (2001). doi:10.1016/S0043-1648(01)00519-1

  20. 20.

    An, V., Irtegov, Y., de Izarra, C.: Study of tribological properties of nanolamellar WS2 and MoS2 as additives to lubricants. J. Nanomater. 2014, 8 (2014). doi:10.1155/2014/865839

  21. 21.

    Twist, C., Bassanetti, I., Snow, M., Delferro, M., Bazzi, H., Chung, Y.-W., Marchió, L., Marks, T., Wang, Q.J.: Silver-organic oil additive for high-temperature applications. Tribol. Lett. 52(2), 261–269 (2013). doi:10.1007/s11249-013-0211-1

  22. 22.

    ASTM International: Evaluation of automotive engine oils in the sequence IIIG, spark-ignition engine. In: ASTM Book of Standards. pp. 1–49. ASTM International, West Conshohocken (2012)

  23. 23.

    Cheng, L., Huang, W., Gong, Q., Liu, C., Liu, Z., Li, Y., Dai, H.: Ultrathin WS2 nanoflakes as a high-performance electrocatalyst for the hydrogen evolution reaction. Angew. Chem. Int. Ed. 53(30), 7860–7863 (2014). doi:10.1002/ange.201405193

  24. 24.

    Lee, C., Hwang, Y., Choi, Y., Lee, J., Choi, C., Oh, J.: A study on the tribological characteristics of graphite nano lubricants. Int. J. Precis. Eng. Manuf. 10(1), 85–90 (2009). doi:10.1007/s12541-009-0013-4

  25. 25.

    Greenwood, O.D., Moulzolf, S.C., Blau, P.J., Lad, R.J.: The influence of microstructure on tribological properties of WO3 thin films. Wear 232(1), 84–90 (1999). doi:10.1016/S0043-1648(99)00255-0

  26. 26.

    Fan, X., Wang, L., Li, W., Wan, S.: Improving tribological properties of multialkylated cyclopentanes under simulated space environment: two feasible approaches. ACS Appl. Mater. Interfaces 7(26), 14359–14368 (2015). doi:10.1021/acsami.5b03088

  27. 27.

    Si, P.Z., Choi, C.J., Lee, J.W., Geng, D.Y., Zhang, Z.D.: Synthesis, structure and tribological performance of tungsten disulphide nanocomposites. Mater. Sci. Eng. A 443(1–2), 167–171 (2007). doi:10.1016/j.msea.2006.08.026

  28. 28.

    Moshkovith, A., Perfiliev, V., Lapsker, I., Fleischer, N., Tenne, R., Rapoport, L.: Friction of fullerene-like WS2 nanoparticles: effect of agglomeration. Tribol. Lett. 24(3), 225–228 (2006). doi:10.1007/s11249-006-9124-6

  29. 29.

    Kheireddin, B.A., Lu, W., Chen, I.C., Akbulut, M.: Inorganic nanoparticle-based ionic liquid lubricants. Wear 303(1–2), 185–190 (2013). doi:10.1016/j.wear.2013.03.004

  30. 30.

    Martin, J.M.: Molybdenum disulphide lubrication: Lansdown, A.R. Tribology series, 35, Dowson, D. (Ed.) 1999, pp. 380. Tribol. Int. 33 (2), 148–149 (2000). doi:10.1016/S0301-679X(00)00020-7

Download references


The authors acknowledge the financial support provided by the Ministry of Science and Technology of China (Project of “973” plan; Grant No. 2013CB632303), National Natural Science Foundation of China (Grant No. 51275154, 51405132), Plan for Young Scientific Innovation Talent of Henan Province (Grant No. 154100510018), Innovation Scientists and Technicians Troop Construction Projects of Henan Province (C20150011) and Natural Science Foundation of Henan Province (Grant No. 14A15006).

Author information

Correspondence to Shengmao Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Jiang, Z., Zhang, Y., Yang, G. et al. Tribological Properties of Oleylamine-Modified Ultrathin WS2 Nanosheets as the Additive in Polyalpha Olefin Over a Wide Temperature Range. Tribol Lett 61, 24 (2016). https://doi.org/10.1007/s11249-016-0643-5

Download citation


  • WS2 nanosheet
  • Polyalpha olefin
  • Lubricant additive
  • Tribological properties