Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Lubricant Dewetting on the Slider’s Air-Bearing Surface in Hard Disk Drives


In current hard disk drives, the minimum air-bearing clearance is of the order of 1 nm during the read/write process. At this ultra-low spacing, lubricant from the disk often transfers to the slider’s air-bearing surface imposing a significant degradation of its performance. It is necessary to make accurate predictions of the lubricant’s response at the head–disk interface in order to engineer reliable hard disk drives. In this article, we perform numerical simulations to investigate the dewetting behavior of some perfluoropolyether lubricant films used in hard disk drives. We model the lubricant flow on the slider surface using a governing equation based on classical lubrication theory. We consider a disjoining pressure that approximates the properties of a ZTMD lubricant and compare the results with those obtained using a purely van der Waals disjoining pressure. We study the spreading of a lubricant film on a slider both at rest and while flying over a spinning disk. The effect of surface tension, air shear stress, and substrate roughness on the dewetting behavior of the film is also investigated.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9


  1. 1.

    Marchon, B., Olson, T.: Magnetic spacing trends: from LMR to PMR and beyond. IEEE Trans. Magn. 45(10), 3608–3611 (2009)

  2. 2.

    Pan, D., Ovcharenko, A., Yang, M., Radicati, F., Talke, F.E.: Effect of pitch and roll static angle on lubricant transfer between disk and slider. Tribol. Lett. 53(1), 261–270 (2014)

  3. 3.

    Seo, Y.W., Pan, D.Z., Ovcharenko, A., Yang, M., Talke, F.E.: Molecular dynamics simulation of lubricant transfer at the head-disk interface. magnetics. IEEE Trans. Magn. 50(11), 1–4 (2014)

  4. 4.

    Ma, X., Chen, J., Richter, H.J., Tang, H., Gui, J.: Contribution of lubricant thickness to head-media spacing. IEEE Trans. Magn. 37(4), 1824–1826 (2001)

  5. 5.

    Guo, X.C., Knigge, B., Marchon, B., Waltman, R.J., Carter, M., Burns, J.: Multidentate functionalized lubricant for ultralow head/disk spacing in a disk drive. J. Appl. Phys. 100(4), 044306 (2006)

  6. 6.

    Gui, J.: Tribology challenges for head-disk interface toward 1 Tb/in 2. IEEE Trans. Magn. 39(2), 716–721 (2003)

  7. 7.

    Ma, X., Gui, J., Smoliar, L., Grannen, K., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of perfluoropolyalkylether films on amorphous carbon surfaces. J. Chem. Phys. 110(6), 3129–3137 (1999)

  8. 8.

    Jhon, M.S., Izumisawa, S., Guo, Q., Phillips, D.M., Hsia, Y.: Simulation of nanostructured lubricant films. IEEE Trans. Magn. 39(2), 754–758 (2003)

  9. 9.

    Waltman, R.J., Khurshudov, A., Tyndall, G.W.: Autophobic dewetting of perfluoropolyether films on amorphous-nitrogenated carbon surfaces. Tribol. Lett. 12(3), 163–169 (2002)

  10. 10.

    Ma, X., Gui, J., Grannen, K.J., Smoliar, L.A., Marchon, B., Jhon, M.S., Bauer, C.L.: Spreading of PFPE lubricants on carbon surfaces: effect of hydrogen and nitrogen content. Tribol. Lett. 6(1), 9–14 (1999)

  11. 11.

    Reiter, G.: Dewetting of thin polymer films. Phys. Rev. Lett. 68(1), 75 (1992)

  12. 12.

    Xie, R., Karim, A., Douglas, J.F., Han, C.C., Weiss, R.A.: Spinodal dewetting of thin polymer films. Phys. Rev. Lett. 81(6), 1251 (1998)

  13. 13.

    Seemann, R., Herminghaus, S., Jacobs, K.: Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86(24), 5534 (2001)

  14. 14.

    Redon, C., Brochard-Wyart, F., Rondelez, F.: Dynamics of dewetting. Phys. Rev. Lett. 66(6), 715 (1991)

  15. 15.

    Becker, J., Grün, G., Seemann, R., Mantz, H., Jacobs, K., Mecke, K.R., Blossey, R.: Complex dewetting scenarios captured by thin-film models. Nat. Mater. 2(1), 59–63 (2003)

  16. 16.

    Derjaguin, B.V., Churaev, N.V.: Structural component of disjoining pressure. J. Colloid Interface Sci. 49(2), 249–255 (1974)

  17. 17.

    Blossey, R.: Thin Liquid Films: Dewetting and Polymer Flow. Springer, Berlin (2012)

  18. 18.

    Scarpulla, M.A., Mate, C.M., Carter, M.D.: Air shear driven flow of thin perfluoropolyether polymer films. J. Chem. Phys. 118(7), 3368–3375 (2003)

  19. 19.

    Marchon, B., Dai, Q., Nayak, V., Pit, R.: The physics of disk lubricant in the continuum picture. IEEE Trans. Magn. 41(2), 616–620 (2005)

  20. 20.

    Mate, C.M.: Spreading kinetics of lubricant droplets on magnetic recording disks. Tribol. Lett. 51(3), 385–395 (2013)

  21. 21.

    Tani, H., Kubota, M., Tsujiguchi, Y., Tagawa, N.: Visualization of lubricant pickup phenomena by lubricant thickness mapping on slider surface. Microsyst. Technol. 17(5–7), 1175–1178 (2011)

  22. 22.

    Mate, C.M., Marchon, B., Murthy, A.N., Kim, S.H.: Lubricant-induced spacing increases at slider–disk interfaces in disk drives. Tribol. Lett. 37(3), 581–590 (2010)

  23. 23.

    Wu, H., Mendez, A.R., Xiong, S., Bogy, D.B.: Lubricant reflow after laser heating in heat assisted magnetic recording. J. Appl. Phys. 117(17), 17E310 (2015)

  24. 24.

    Gross, W.A., Matsch, L.A., Castelli, V., Eshel, A., Vohr, J.H., Wildmann, M.: Fluid film lubrication (No. DOE/TIC-11301). Wiley, New York, NY (1980)

  25. 25.

    Mendez, A.R., Bogy, D.B.: Lubricant flow and accumulation on the slider’s air-bearing surface in a hard disk drive. Tribol. Lett. 53(2), 469–476 (2014)

  26. 26.

    Sarabi, M.S.G., Bogy, D.B.: Simulation of the performance of various PFPE lubricants under heat assisted magnetic recording conditions. Tribol. Lett. 56(2), 293–304 (2014)

  27. 27.

    Karis, T.E., Marchon, B., Flores, V., Scarpulla, M.: Lubricant spin-off from magnetic recording disks. Tribol. Lett. 11(3–4), 151–159 (2001)

  28. 28.

    Karis, T.E., Tyndall, G.W.: Calculation of spreading profiles for molecularly-thin films from surface energy gradients. J. Non-newton. Fluid Mech. 82(2), 287–302 (1999)

  29. 29.

    Marchon, B., Dai, Q., Knigge, B., Pit, R.: Lubricant dynamics in the sub-nanometer clearance regime. IEEE Trans. Magn. 43(9), 3694–3698 (2007)

  30. 30.

    Kubotera, H., Bogy, D.B.: Numerical simulation of molecularly thin lubricant film flow due to the air bearing slider in hard disk drives. Microsyst. Technol. 13(8–10), 859–865 (2007)

  31. 31.

    Mate, C.M.: Taking a fresh look at disjoining pressure of lubricants at slider-disk interfaces. IEEE Trans. Magn. 47(1), 124–130 (2011)

  32. 32.

    Bowles, A.P., Hsia, Y.T., Jones, P.M., Schneider, J.W., White, L.R.: Quasi-equilibrium AFM measurement of disjoining pressure in lubricant nano-films I: Fomblin Z03 on silica. Langmuir 22(26), 11436–11446 (2006)

  33. 33.

    Oron, A., Davis, S.H., Bankoff, S.G.: Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69(3), 931 (1997)

  34. 34.

    Kim, H.I., Mate, C.M., Hannibal, K.A., Perry, S.S.: How disjoining pressure drives the dewetting of a polymer film on a silicon surface. Phys. Rev. Lett. 82(17), 3496 (1999)

  35. 35.

    Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol. 19. American Mathematical Society, Providence (1998)

  36. 36.

    Tyndall, G.W., Waltman, R.J., Pocker, D.J.: Concerning the interactions between Zdol perfluoropolyether lubricant and an amorphous-nitrogenated carbon surface. Langmuir 14(26), 7527–7536 (1998)

  37. 37.

  38. 38.

    Xu, L., Ogletree, D.F., Salmeron, M., Tang, H., Gui, J., Marchon, B.: De-wetting of lubricants on hard disks. J. Chem. Phys. 112(6), 2952–2957 (2000)

Download references

Author information

Correspondence to Alejandro Rodriguez Mendez.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Mendez, A.R., Bogy, D.B. Lubricant Dewetting on the Slider’s Air-Bearing Surface in Hard Disk Drives. Tribol Lett 61, 22 (2016).

Download citation


  • Dewetting
  • Hard disk drives
  • Lubrication
  • Air bearing
  • Head–disk interface