Tribology Letters

, 60:5 | Cite as

Friction Modifier Additives

  • Hugh SpikesEmail author
Original Paper


The need for energy efficiency is leading to the growing use of additives that reduce friction in thin film boundary and mixed lubrication conditions. Several classes of such friction modifier additive exist, the main ones being organic friction modifiers, functionalised polymers, soluble organo-molybdenum additives and dispersed nanoparticles. All work in different ways. This paper reviews these four main types of lubricant friction modifier additive and outlines their history, research and the mechanisms by which they are currently believed to function. Aspects of their behaviour that are still not yet fully understood are highlighted.


Friction Lubricant additives OFM Molybdenum additives Functionalised polymers Nanoparticles Boundary lubrication 


  1. 1.
    Tang, Z., Li, S.: A review of recent developments of friction modifiers for liquid lubricants (2007-present). Curr. Opin. Solid State Mater. Sci. 18, 119–139 (2014)CrossRefGoogle Scholar
  2. 2.
    Reynolds, O.: On the theory of lubrication and its application to Mr. Beauchamp Tower’s experiments, including an experimental determination of the viscosity of olive oil. Proc. R. Soc. Lond. 40, 191–203 (1886)CrossRefGoogle Scholar
  3. 3.
    Lanchester, F.W.: Communicated remarks to discussion on lubrication. Proc. Phys. Soc. Lond. 32, 29s–33s (1919)Google Scholar
  4. 4.
    Wells, H.M., Southcombe, J.E.: The theory and practice of lubrication: the “Germ” process. J. Soc. Chem. Ind. 39, 51T–60T (1920)CrossRefGoogle Scholar
  5. 5.
    Kingsbury, A.A.: New type of oil-testing machine and some of its results. Trans. ASME 24, 143–160 (1903)Google Scholar
  6. 6.
    Deeley, M.: Oiliness and lubrication; Discussion on lubrication. Proc. Phys. Soc. Lond. 32, 1s–11s (1919)CrossRefGoogle Scholar
  7. 7.
    Langmuir, I.: The mechanism of the surface phenomena of flotation. Trans. Faraday Soc. 1, 62–74 (1920)CrossRefGoogle Scholar
  8. 8.
    Hardy, H.B., Doubleday, I.: Boundary lubrication—the paraffin series. Proc. R. Soc. Lond. A100, 550–557 (1922)CrossRefGoogle Scholar
  9. 9.
    Bowden, F.P., Tabor, D.: The Friction and Lubrication of Solids. Clarendon Press, Oxford (1971)Google Scholar
  10. 10.
    Hersey, M.D.: Theory of lubrication. In: The problem of oiliness. Wiley, New York (1936)Google Scholar
  11. 11.
    Allen, C.M., Drauglis, E.: Boundary layer lubrication: monolayer or multilayer. Wear 14, 363–384 (1969)CrossRefGoogle Scholar
  12. 12.
    Bray, U.B., Moore, C.C., Merrill, D.R.: Improvements in diesel-engine lubricating oils. SAE Technical Paper No. 390125 (1939)Google Scholar
  13. 13.
    Prutton, C.F., Frey, D.R., Turnbull, D., Dlouhy, G.: Corrosion of metals by organic acids in hydrocarbon solvents. Ind. Eng. Chem. 37, 90–100 (1945)CrossRefGoogle Scholar
  14. 14.
    Cantrell, T.L., Peters, J.G., Smith, H.G.: Mineral oil compositions containing amidic acids or salts thereof. US Patent No. 2,699,427, 11 Jan 1955Google Scholar
  15. 15.
    Eckert, G.W.: Adducts of aliphatic monocarboxylic acids and aliphatic amines in gasoline. US Patent No. 3,055,746, 25 Sept 1962Google Scholar
  16. 16.
    Schick, J.W., Kaminski, J.M.: Lubricant composition for reduction of fuel consumption in internal combustion engines. US Patent No. 4,304,678, 8 Dec 1981Google Scholar
  17. 17.
    Puddington, I.E., Sirianni, A.F.: Friction reducing additives for lubricants. US Patent No. 2,689,224, 14 Sept 1954Google Scholar
  18. 18.
    Hiebert, J., Rowe, C.N., Rudnick, L.R.: Alkylated citric acid adducts as antiwear and friction modifying additives. US Patent No. 5,338,470, 16 Aug 1994Google Scholar
  19. 19.
    Kocsis, J., Vilardo, J.S., Brown, J.R., Barrer, D.E., Vickerman, R.J., Mosier, P.E.: Tartaric acid derivatives in fuel compositions. US Patent 8,133,290, 13 March 2012Google Scholar
  20. 20.
    Heinz, W.E., Schiermeier, K.F.: Corrosion inhibiting composition. US Patent No. 2,482,517, 20 Sept 1949Google Scholar
  21. 21.
    Haviland, M.L., Goodwin, M.C.: Fuel economy improvements with friction-modified engine oils in Environmental Protection Agency and road tests. SAE Technical Paper No. 790945 (1979)Google Scholar
  22. 22.
    Dasai, M.: Lubricating oil composition. US Patent 5064546 (1991)Google Scholar
  23. 23.
    Horodysky, A.G., Gemmill, Jr. R.M.: Mixed borate esters and their use as lubricant and fuel additives. US Patent No. 4,472,289, 18 Sept 1984Google Scholar
  24. 24.
    Bowden, F.P., Leben, L.: The friction of lubricated metals. Philos. Trans. R. Soc. Lond. A239, 1–27 (1940)CrossRefGoogle Scholar
  25. 25.
    Spikes, H.A., Cameron, A.: A comparison of adsorption and boundary lubricant failure. Proc. R. Soc. Lond. A336, 407–419 (1974)CrossRefGoogle Scholar
  26. 26.
    Okabe, H., Masuko, M., Sakurai, K.: Dynamic behavior of surface-adsorbed molecules under boundary lubrication. ASLE Trans. 24, 467–473 (1981)CrossRefGoogle Scholar
  27. 27.
    Jahanmir, S., Beltzer, M.: An adsorption model for friction in boundary lubrication. ASLE Trans. 29, 423–430 (1986)CrossRefGoogle Scholar
  28. 28.
    Hardy, W., Bircumshaw, I.: Bakerian lecture. Boundary lubrication. Plane surfaces and the limitations of Amontons’ law. Proc. Roy. Soc. Lond. A108, 1–27 (1925)CrossRefGoogle Scholar
  29. 29.
    Beare, W.G., Bowden, F.P.: Physical properties of surfaces. I. Kinetic friction. Philos. Trans. R. Soc. Lond. A234, 329–354 (1935)CrossRefGoogle Scholar
  30. 30.
    Bowden, F.P., Gregory, J.N., Tabor, D.: Lubrication of metal surfaces by fatty acids. Nature 15, 97–101 (1945)CrossRefGoogle Scholar
  31. 31.
    Jahanmir, S.: Chain length effects in boundary lubrication. Wear 102, 331–349 (1985)CrossRefGoogle Scholar
  32. 32.
    Studt, P.: Boundary lubrication: adsorption of oil additives on steel and ceramic surfaces and its influence on friction and wear. Tribol. Int. 22, 111–119 (1989)CrossRefGoogle Scholar
  33. 33.
    Cottington, R.L., Shafrin, E.G., Zisman, W.A.: Physical properties of monolayers at the solid/air interface. III. Friction and durability of films on stainless steel. J. Phys. Chem. 62, 513–518 (1958)CrossRefGoogle Scholar
  34. 34.
    Jahanmir, S., Beltzer, M.: Effect of additive molecular structure on friction coefficient and adsorption. Trans. ASME J. Tribol. 108, 109–116 (1986)CrossRefGoogle Scholar
  35. 35.
    Campen, S.M.: Fundamentals of organic friction modifier behaviour. PhD Thesis, Imperial College London (2012)Google Scholar
  36. 36.
    Whitehead, J.R.: Surface deformation and friction of metals at light loads. Proc. R. Soc. Lond. A201, 109–124 (1950)CrossRefGoogle Scholar
  37. 37.
    Deryaguin, B.V., Karassev, V.V., Zakhavaeva, N.N., Lazarev, V.P.: The mechanism of boundary lubrication and the properties of the lubricating film: short- and long-range action in the theory of boundary lubrication. Wear 1, 277–290 (1958)CrossRefGoogle Scholar
  38. 38.
    Briscoe, B.J., Evans, D.C.B.: The shear properties of Langmuir–Blodgett layers. Proc. R. Soc. Lond. A 380, 389–407 (1982)CrossRefGoogle Scholar
  39. 39.
    Frewing, J.J.: The influence of temperature on boundary lubrication. Proc. R. Soc. Lond. A181, 23–42 (1942)CrossRefGoogle Scholar
  40. 40.
    Bowden, F.P., Gregory, J.N., Tabor, D.: Lubrication of metal surfaces by fatty acids. Nature 156, 97–101 (1945)CrossRefGoogle Scholar
  41. 41.
    Salem, L.: Attractive forces between long saturated chains at short distances. J. Chem. Phys. 37, 2100–2113 (1962)CrossRefGoogle Scholar
  42. 42.
    Beltzer, M., Jahanmir, S.: Role of dispersion interactions between hydrocarbon chains in boundary lubrication. ASLE Trans. 30, 47–54 (1987)CrossRefGoogle Scholar
  43. 43.
    Studt, P.: The influence of the structure of isomeric octadecanols on their adsorption from solution on iron and their lubricating properties. Wear 70, 329–334 (1981)CrossRefGoogle Scholar
  44. 44.
    Bowden, F.P., Moore, A.C.: Physical and chemical adsorption of long chain compounds on radioactive metals. Trans. Faraday Soc. 47, 900–908 (1951)CrossRefGoogle Scholar
  45. 45.
    Cook, H.D., Ries Jr, H.: Adsorption of radiostearic acid and radiostearyl alcohol from n-hexadecane onto solid surfaces. J. Phys. Chem. 63, 226–230 (1959)CrossRefGoogle Scholar
  46. 46.
    Gaines, G.L.: Some observations on monolayers of carbon-14 labeled stearic acid. J. Colloid Sci. 15, 321–339 (1960)CrossRefGoogle Scholar
  47. 47.
    Block, A., Simms, B.B.: Desorption and exchange of adsorbed octadecylamine and stearic acid on steel and glass. J. Colloid Interface Sci. 25, 514–518 (1967)CrossRefGoogle Scholar
  48. 48.
    Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies. 1. Formation, dynamics, and physical properties of n-alkanoic acids adsorbed from solution on an oxidized aluminum surface. Langmuir 1, 45–52 (1985)CrossRefGoogle Scholar
  49. 49.
    Hutchinson, E.: On adsorption and lubrication at crystal surfaces. Part II. On the adsorption of paraffin chain compounds on sodium nitrate. Trans. Faraday Soc. 43, 439–442 (1947)CrossRefGoogle Scholar
  50. 50.
    Greenhill, E.B.: The adsorption of long chain polar compounds from solution on metal surfaces. Trans. Faraday Soc. 45, 625–631 (1949)CrossRefGoogle Scholar
  51. 51.
    Daniel, S.G.: The adsorption on metal surfaces of long chain polar compounds from hydrocarbon solutions. Trans. Faraday Soc. 47, 1345–1359 (1951)CrossRefGoogle Scholar
  52. 52.
    Hirst, W., Lancaster, J.K.: Effect of water on the interaction between stearic acid and fine powders. Trans. Faraday Soc. 47, 315–322 (1951)CrossRefGoogle Scholar
  53. 53.
    Askwith, T.C., Cameron, A., Crouch, R.F.: Chain length of additives in relation to lubricants in thin film and boundary lubrication. Proc. R. Soc. Lond. A291, 500–519 (1966)CrossRefGoogle Scholar
  54. 54.
    Grew, W., Cameron, A.: Friction transition temperature effect of matching surfactant and carrier. Nature 214, 429–430 (1967)CrossRefGoogle Scholar
  55. 55.
    Okabe, H., Kanno, T.: Behavior of polar compounds in lubricating-oil films. ASLE Trans. 24, 459–466 (1981)CrossRefGoogle Scholar
  56. 56.
    Hirano, F., Sakai, T., Kuwano, N., Ohno, N.: Chain matching between hydrocarbon and fatty acid as interfacial phenomena. Tribol. Int. 20, 186–204 (1987)CrossRefGoogle Scholar
  57. 57.
    Georges, J.M., Tonck, A., Mazuyer, D.: Interfacial friction of wetted monolayers. Wear 175, 59–62 (1994)CrossRefGoogle Scholar
  58. 58.
    Zhu, Y., Ohtani, H., Greenfield, M.L., Ruths, M., Granick, S.: Modification of boundary lubrication by oil-soluble friction modifier additives. Tribol. Lett. 15, 127–134 (2003)CrossRefGoogle Scholar
  59. 59.
    Mazuyer, D., Cayer-Barrioz, J., Tonck, A., Jarnias, F.: Friction dynamics of confined weakly adhering boundary layers. Langmuir 24, 3857–3866 (2008)CrossRefGoogle Scholar
  60. 60.
    Lundgren, S.M., Ruths, M., Danerlöv, K., Persson, K.: Effects of unsaturation on film structure and friction of fatty acids in a model base oil. J. Colloid Interface Sci. 326, 530–536 (2008)CrossRefGoogle Scholar
  61. 61.
    Slough, C.G., Ohtani, H., Everson, M.P., Melotik, D.J.: The effect of friction modifiers on the low-speed friction characteristics of automatic transmission fluids observed with scanning force microscopy. SAE Technical Paper No. 981099 (1998)Google Scholar
  62. 62.
    Ruths, M., Lundgren, S., Danerlöv, K., Persson, K.: Friction of fatty acids in nanometer-sized contacts of different adhesive strength. Langmuir 24, 1509–1516 (2008)CrossRefGoogle Scholar
  63. 63.
    Cheng, H., Hu, Y.: Influence of chain ordering on frictional properties of self-assembled monolayers (SAMS) in nano-lubrication. Adv. Colloid Interface Sci. 171–172, 53–65 (2012)CrossRefGoogle Scholar
  64. 64.
    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM: self-assembly of octadecylamine. Tribol. Lett. 58, 1–15 (2015)CrossRefGoogle Scholar
  65. 65.
    Lundgren, S.M., Persson, K., Kronberg, B., Claesson, P.M.: Adsorption of fatty acids from alkane solution studied with quartz crystal microbalance. Tribol. Lett. 22, 15–20 (2006)CrossRefGoogle Scholar
  66. 66.
    Ratoi, M., Anghel, V., Bovington, C., Spikes, H.A.: Mechanisms of oiliness additives. Tribol. Int. 33, 241–247 (2000)CrossRefGoogle Scholar
  67. 67.
    Campana, M., Teichert, A., Clarke, S., Steitz, R., Webster, J.R., Zarbakhsh, A.: Surfactant adsorption at the metal–oil interface. Langmuir 27, 6085–6090 (2011)CrossRefGoogle Scholar
  68. 68.
    Hirayama, T., Torii, T., Konishi, Y., Maeda, M., Matsuoka, T., Inoue, K., Takeda, M.: Thickness and density of adsorbed additive layer on metal surface in lubricant by neutron reflectometry. Tribol. Int. 54, 100–105 (2012)CrossRefGoogle Scholar
  69. 69.
    Allara, D.L., Nuzzo, R.G.: Spontaneously organized molecular assemblies. 2. Quantitative infrared spectroscopic determination of equilibrium structures of solution-adsorbed n-alkanoic acids on an oxidized aluminum surface. Langmuir 1, 52–66 (1985)CrossRefGoogle Scholar
  70. 70.
    Marrucci, L., Paparo, D., Cerrone, G., Solimeno, S., Russo, R., Lenza, T.L., Siano, P.: Optical analysis of surfaces by second-harmonic generation: possible applications to tribology. Tribotest 8, 329–337 (2002)CrossRefGoogle Scholar
  71. 71.
    Koshima, H., Kamano, H., Hisaeda, Y., Liu, H., Ye, S.: Analyses of the adsorption structures of friction modifiers by means of quantitative structure-property relationship method and sum frequency generation spectroscopy. Tribol. Online 5, 165–172 (2010)CrossRefGoogle Scholar
  72. 72.
    Porter, M.D., Bright, T.B., Allara, D.L., Chidseyi, C.E.D.: Spontaneously organized molecular assemblies. 4. Structural characterization of n-alkyl thiol monolayers on gold by optical ellipsometry, infrared spectroscopy, and electrochemistry. J. Am. Chem. Soc. 109, 3559–3568 (1987)CrossRefGoogle Scholar
  73. 73.
    Maoz, R., Sagiv, J.: On the formation and structure of self-assembling monolayers I A comparative ATR-wettability study of Langmuir-Blodgett and adsorbed films on flat substrates and glass microbeads. J. Colloid Interface Sci. 100, 465–496 (1984)CrossRefGoogle Scholar
  74. 74.
    Tsukruk, V.V., Bliznyuk, V.N., Hazel, J., Visser, D., Everson, M.P.: Organic molecular films under shear forces: fluid and solid Langmuir monolayers. Langmuir 12, 4840–4849 (1996)CrossRefGoogle Scholar
  75. 75.
    Bhushan, B., Liu, H.: Nanotribological properties and mechanisms of alkylthiol and biphenyl thiol self-assembled monolayers studied by AFM. Phys. Rev. B 63, 245412 (2001)CrossRefGoogle Scholar
  76. 76.
    Xiao, X., Hu, J., Charych, D.H., Salmeron, M.: Chain length dependence of the frictional properties of alkylsilane molecules self-assembled on mica studied by atomic force microscopy. Langmuir 1, 235–237 (1996)CrossRefGoogle Scholar
  77. 77.
    Benitez, J.J., Kopta, S., Ogletree, D.F., Salmeron, M.: Preparation and characterization of self-assembled monolayers of octadecylamine on mica using hydrophobic solvents. Langmuir 18, 6096–6100 (2002)CrossRefGoogle Scholar
  78. 78.
    Brewer, N.J., Beake, B.D., Leggett, G.J.: Friction force microscopy of self-assembled monolayers: influence of adsorbate alkyl chain length, terminal group chemistry, and scan velocity. Langmuir 17, 1970–1974 (2001)CrossRefGoogle Scholar
  79. 79.
    Lee, S., Shon, Y.S., Colorado, R., Guenard, R.L., Lee, T.R., Perry, S.S.: The influence of packing densities and surface order on the frictional properties of alkanethiol self-assembled monolayers (SAMs) on gold: a comparison of SAMs derived from normal and spiroalkanedithiols. Langmuir 16, 2220–2224 (2000)CrossRefGoogle Scholar
  80. 80.
    Salmeron, M.: Generation of defects in model lubricant monolayers and their contribution to energy dissipation in friction. Tribol. Lett. 10, 69–79 (2001)CrossRefGoogle Scholar
  81. 81.
    Campen, S., Green, J.H., Lamb, G.D., Spikes, H.A.: In situ study of model organic friction modifiers using liquid cell AFM; saturated and mono-unsaturated carboxylic acids. Tribol. Lett. 57, 1–20 (2015)CrossRefGoogle Scholar
  82. 82.
    Glovnea, R.P., Forrest, A.K., Olver, A.V., Spikes, H.A.: Measurement of sub-nanometer lubricant films using ultra-thin film interferometry. Tribol. Lett. 15, 217–230 (2003)CrossRefGoogle Scholar
  83. 83.
    Fraenkel, R., Butterworth, G.E., Bain, C.D.: In situ vibrational spectroscopy of an organic monolayer at the sapphire–quartz interface. J. Am. Chem. Soc. 120, 203–204 (1998)CrossRefGoogle Scholar
  84. 84.
    Beattie, D.A., Haydock, S., Bain, C.D.: A comparative study of confined organic monolayers by Raman scattering and sum-frequency spectroscopy. Vib. Spectrosc. 24, 109–123 (2000)CrossRefGoogle Scholar
  85. 85.
    Jacob, J.D.C., Rittikulsittichai, S., Lee, T.R., Baldelli, S.: Characterization of SAMs derived from octadecyloxyphenylethanethiols by sum frequency generation. J. Phys. Chem. C 117, 9355–9365 (2013)CrossRefGoogle Scholar
  86. 86.
    Beattie, D.A., Fraenkel, R., Winget, S.A., Petersen, A., Bain, C.D.: Sum-frequency spectroscopy of a monolayer of zinc arachidate at the solid-solid interface. J. Phys. Chem. B 110, 2278–2292 (2006)CrossRefGoogle Scholar
  87. 87.
    Miyake, K., Kume, T., Nakano, M., Korenaga, A., Takiwatari, K., Tsuboi, R., Sasaki, S.: Effects of surface chemical properties on the frictional properties of self-assembled monolayers lubricated with oleic acid. Tribol. Online 7, 218–224 (2012)CrossRefGoogle Scholar
  88. 88.
    Simič, R., Kalin, M., Hirayama, T., Korelis, P., Geue, T.: Fatty acid adsorption on several DLC coatings studied by neutron reflectometry. Tribol. Lett. 53, 199–206 (2014)CrossRefGoogle Scholar
  89. 89.
    Nakano, K., Spikes, H.A.: Initial process of boundary film formation with fatty acid solution. Tribol. Online 7, 1–7 (2012)CrossRefGoogle Scholar
  90. 90.
    Walba, D.M., Liberko, C.A.: Self-assembled monolayers for liquid crystal alignment. US Patent No. 5,596,434, 21 Jan 1997Google Scholar
  91. 91.
    Campen, S., Green, J.H., Lamb, G.D., Atkinson, D., Spikes, H.A.: On the increase in boundary friction with sliding speed. Tribol. Lett. 48, 237–248 (2012)CrossRefGoogle Scholar
  92. 92.
    Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: Performance of friction modifiers on ZDDP-generated surfaces. Tribol. Trans. 50, 328–335 (2007)CrossRefGoogle Scholar
  93. 93.
    Vengudusamy, B.: Behaviour of lubricant additives on DLC coatings. PhD Thesis, Imperial College London (2011)Google Scholar
  94. 94.
    Kano, M., Yasuda, Y., Okamoto, Y., Mabuchi, Y., Hamada, T., Ueno, T., Yec, J., Konishi, S., Takeshima, S., Martin, J.M., De Barros Bouchet, M.I., Le Mogne, T.: Ultralow friction of DLC in presence of glycerol mono-oleate (GMO). Tribol. Lett. 18, 245–251 (2005)CrossRefGoogle Scholar
  95. 95.
    Minami, I., Kubo, T., Nanao, H., Mori, S., Sagawa, T., Okuda, S.: Investigation of tribo-chemistry by means of stable isotopic tracers, Part 2: lubrication mechanism of friction modifiers on diamond-like carbon. Tribol. Trans. 50, 477–487 (2007)CrossRefGoogle Scholar
  96. 96.
    Glosli, J.N., McClelland, G.M.: Molecular dynamics study of sliding friction of ordered organic monolayers. Phys. Rev. Lett. 70, 1960–1963 (1993)CrossRefGoogle Scholar
  97. 97.
    Koike, A., Yoneya, M.: Molecular dynamics simulations of sliding friction of Langmuir–Blodgett monolayers. J. Chem. Phys. 105, 6060–6067 (1996)CrossRefGoogle Scholar
  98. 98.
    Koike, A., Yoneya, M.: Effects of molecular structure on frictional properties of Langmuir–Blodgett monolayers. Langmuir 13, 1718–1722 (1997)CrossRefGoogle Scholar
  99. 99.
    Mikulski, P.T., Herman, L.A., Harrison, J.A.: Odd and even model self-assembled monolayers: links between friction and structure. Langmuir 21, 12197–12206 (2005)CrossRefGoogle Scholar
  100. 100.
    Wu, C.D., Lin, J.F., Fang, T.H.: Molecular dynamic simulation and characterization of self-assembled monolayer under sliding friction. Comput. Mater. Sci. 39, 808–816 (2007)CrossRefGoogle Scholar
  101. 101.
    Moller, M.A., Tildesley, D.J., Kim, K.S., Quirke, N.: Molecular dynamics simulation of a Langmuir–Blodgett film. J. Chem. Phys. 94, 8390–8401 (1991)CrossRefGoogle Scholar
  102. 102.
    Doig, M., Camp, P.J.: The structures of hexadecylamine films adsorbed on iron-oxide surfaces in dodecane and hexadecane. Phys. Chem. Chem. Phys. 17, 5248–5255 (2015)CrossRefGoogle Scholar
  103. 103.
    Doig, M., Warrens, C.P., Camp, P.J.: Structure and friction of stearic acid and oleic acid films adsorbed on iron oxide surfaces in squalane. Langmuir 30, 186–195 (2013)CrossRefGoogle Scholar
  104. 104.
    Loehle, S., Matta, C., Minfray, C., Le Mogne, T., Martin, J.M., Iovine, R., Obara, Y., Miura, R., Miyamoto, A.: Mixed lubrication with C18 fatty acids: effect of unsaturation. Tribol. Lett. 53, 319–328 (2014)CrossRefGoogle Scholar
  105. 105.
    Cameron, A.: A theory of boundary lubrication. ASLE Trans. 2, 195–198 (1959)Google Scholar
  106. 106.
    Drauglis, E., Lucas, A.A., Allen, C.M.: Smectic model for liquid films on solid surfaces. Part 1—application to monolayer boundary lubrication. Spec. Discuss. Faraday Soc. 1, 251–256 (1970)CrossRefGoogle Scholar
  107. 107.
    Sutcliffe, M.J., Taylor, S.R., Cameron, A.: Molecular asperity theory of boundary friction. Wear 51, 181–192 (1978)CrossRefGoogle Scholar
  108. 108.
    Tabor, D.: The role of surface and intermolecular forces in thin film lubrication. Tribology series. In: Georges, J.M. (ed.) Microscopic Aspects of Adhesion and Lubrication, vol. 7, pp. 651–682. Elsevier, Amsterdam (1982)Google Scholar
  109. 109.
    Dorinson, A.: The slow speed frictional behavior of some lubricant additive type-substances. ASLE Trans. 13, 215–224 (1970)CrossRefGoogle Scholar
  110. 110.
    Chugg, K.J., Chaudhri, M.M.: Boundary lubrication and shear properties of thin solid films of dioctadecyl dimethyl ammonium chloride (TA 100). J. Phys. D Appl. Phys. 26, 1993–2000 (1993)CrossRefGoogle Scholar
  111. 111.
    Ingram, M., Noles, J., Watts, R., Harris, S., Spikes, H.A.: Frictional properties of automatic transmission fluids: Part 1: measurement of friction-sliding speed behaviour. Tribol. Trans. 54, 145–153 (2011)CrossRefGoogle Scholar
  112. 112.
    Drummond, C., Israelachvili, J., Richetti, Ph: Friction between two weakly adhering boundary lubricated surfaces in water. Phys. Rev. E 67, 066110 (2003)CrossRefGoogle Scholar
  113. 113.
    Yoshizawa, H., Chen, Y.L., Israelachvili, J.: Fundamental mechanisms of interfacial friction. 1. Relation between adhesion and friction. J. Phys. Chem. 97, 4128–4140 (1993)CrossRefGoogle Scholar
  114. 114.
    Spikes, H.A.: The half-wetted bearing. Part 2: potential application in low load contacts. Proc. Inst. Mech. Eng. J. 217, 15–26 (2003)CrossRefGoogle Scholar
  115. 115.
    Spikes, H.A.: Slip at the wall—evidence and tribological implications. In: Dowson, D., et al. (ed.) Proceedings of 29th Leeds/Lyon Symposium, Tribological Research and Design for Engineering Systems, pp. 525–535. Elsevier, Amsterdam (2003)Google Scholar
  116. 116.
    Choo, J.H., Spikes, H.A., Ratoi, M., Glovnea, R., Forrest, A.: Friction reduction in low-load hydrodynamic lubrication with a hydrophobic surface. Tribol. Int. 40, 154–159 (2007)CrossRefGoogle Scholar
  117. 117.
    Hare, E.F., Zisman, W.A.: Autophobic liquids and the properties of their adsorbed films. J. Phys. Chem. 59, 335–340 (1954)CrossRefGoogle Scholar
  118. 118.
    Choo, J.-H., Forrest, A.K., Spikes, H.A.: Influence of organic friction modifier on liquid slip: a new mechanism of organic friction modifier action. Tribol. Lett. 27, 239–244 (2007)CrossRefGoogle Scholar
  119. 119.
    Briscoe, B.J., Evans, D.C.B., Tabor, D.: The influence of contact pressure and saponification on the sliding behavior of stearic acid monolayers. J. Colloid Interface Sci. 61, 9–13 (1977)CrossRefGoogle Scholar
  120. 120.
    Briscoe, B.J., Tabor, D.: Rheology of thin organic films. ASLE Trans. 17, 158–165 (1974)CrossRefGoogle Scholar
  121. 121.
    Cooper, H.S., Damerell, V.R.: Lubricants suitable for various uses. US Patent 2156803 (1939)Google Scholar
  122. 122.
    Risdon, T.J., Gresty, D.A.: An historical review of reductions in fuel consumption of United States and European engines with MoS2. SAE Technical Paper 750674 (1975)Google Scholar
  123. 123.
    White, H.S., Zei, D.: Static friction tests with various metal combinations and special lubricants. J. Res. Nat. Bur. Stand. 46, 292–298 (1951)CrossRefGoogle Scholar
  124. 124.
    Gansheimer, J., Holinski, R.: Molybdenum disulfide in oils and greases under boundary conditions. Trans. ASME J. Tribol. 95, 242–246 (1973)Google Scholar
  125. 125.
    Gänsheimer, J., Holinski, R.: A study of solid lubricants in oils and greases under boundary conditions. Wear 19, 439–449 (1972)CrossRefGoogle Scholar
  126. 126.
    Hugel, G.: Fragen der Schmierőlforschung. Erdol und Kohle 8, 651–655 (1955)Google Scholar
  127. 127.
    Hugel, G.: Bleu de molybène soluble dans les hydrocarbures. French Patent FR1099953A (1955)Google Scholar
  128. 128.
    Spengler, G., Weber, A.: Über die Schmierfähigkeit organischer Molybdänverbindungen. Chem. Ber. 92, 2163–2171 (1959)CrossRefGoogle Scholar
  129. 129.
    Feng, I.M., Perilstein, W.L., Adams, M.R.: Solid film deposition and non-sacrificial boundary lubrication. ASLE Trans. 6, 60–66 (1963)CrossRefGoogle Scholar
  130. 130.
    Black, A.L., Dunster, R.W.: Comparative study of surface deposits and behaviour of MoS2 particles and molybdenum dialkyl-dithio-phosphate. Wear 13, 119–132 (1969)CrossRefGoogle Scholar
  131. 131.
    Gresty, D.A., Kunz, E.J., Risdon, T.J.: The effect of MoS2 based lubricants on automotive gear efficiency and operating temperatures. SAE Technical Paper 770834 (1977)Google Scholar
  132. 132.
    Braithwaite, E.R., Greene, A.B.: A critical analysis of the performance of molybdenum compounds in motor vehicles. Wear 46, 405–432 (1978)CrossRefGoogle Scholar
  133. 133.
    Greene, A.B., Risdon, T.J.: The effect of molybdenum-containing, oil-soluble friction modifiers on engine fuel economy and gear oil efficiency. SAE Technical Paper 811187 (1981)Google Scholar
  134. 134.
    Sakurai, T., Okabe, H., Isoyama, H.: The synthesis of di-μ-thio-dithio-bis (dialkyldithiocarbamates) dimolybdenum (V) and their effects on boundary lubrication. Bull. Jpn. Pet. Inst. 13, 243–249 (1971)CrossRefGoogle Scholar
  135. 135.
    Mitchell, P.C.: Oil-soluble Mo–S compounds as lubricant additives. Wear 100, 281–300 (1984)CrossRefGoogle Scholar
  136. 136.
    Yamamoto, Y., Gondo, S., Kamakura, T., Tanaka, N.: Frictional characteristics of molybdenum dithiophosphates. Wear 112, 79–87 (1986)CrossRefGoogle Scholar
  137. 137.
    Graham, J., Korcek, S., Spikes, H.A.: The friction-reducing properties of molybdenum dialkyldithiocarbamate additives. Part 1. Factors influencing friction reduction. Tribol. Trans. 44, 626–636 (2001)CrossRefGoogle Scholar
  138. 138.
    Graham, J.C.H.: The behaviour of molybdenum dialkyldithiocarbamate friction modifier additives. PhD Thesis, University of London (2001)Google Scholar
  139. 139.
    Yamamoto, Y., Gondo, S.: Friction and wear characteristics of molybdenum dithiocarbamate and molybdenum dithiophosphate. Tribol. Trans. 32, 251–257 (1989)CrossRefGoogle Scholar
  140. 140.
    Gondo, S., Konishi, M.: Organoamine and organophosphate molybdenum complexes as lubricant additives. Wear 12, 51–60 (1987)Google Scholar
  141. 141.
    Grossiord, C., Varlot, K., Martin, J.M., Le Mogne, Th, Esnouf, C., Inoue, K.: MoS2 Single sheet lubrication by molybdenum dithiocarbamate. Tribol. Int. 31, 737–743 (1998)CrossRefGoogle Scholar
  142. 142.
    Evans, R.D., Doll, G.L., Hager, C.H., Howe, J.Y.: Influence of steel type on the propensity for tribochemical wear in boundary lubrication with a wind turbine gear oil. Tribol. Lett. 38, 25–32 (2010)CrossRefGoogle Scholar
  143. 143.
    Topolovec Miklozic, K., Graham, J., Spikes, H.: Chemical and physical analysis of reaction films formed by molybdenum dialkyldithiocarbamate friction modifier additive using Raman and atomic force microscopy. Tribol. Lett. 11, 71–81 (2001)CrossRefGoogle Scholar
  144. 144.
    Unnikrishnan, R., Jain, M.C., Harinarayan, A.K., Mehta, A.K.: Additive–additive interaction: an XPS study of the effect of ZDDP on the AW/EP characteristics of molybdenum based additives. Wear 252, 240–249 (2002)CrossRefGoogle Scholar
  145. 145.
    Windom, B.C., Sawyer, W.G., Hahn, D.W.: A Raman spectroscopic study of MoS2 and MoO3: applications to tribological systems. Tribol. Lett. 42, 301–310 (2011)CrossRefGoogle Scholar
  146. 146.
    Muraki, M., Yanagi, Y., Sakaguchi, K.: Synergistic effect on frictional characteristics under rolling-sliding conditions due to a combination of molybdenum dialkyldithiocarbamate and zinc dialkyldithiophosphate. Tribol. Int. 30, 69–75 (1997)CrossRefGoogle Scholar
  147. 147.
    Kasrai, M., Cutler, J.N., Gore, K., Canning, G., Bancroft, G.M., Tan, K.H.: The chemistry of antiwear films generated by the combination of ZDDP and MoDTC examined by X-ray absorption spectroscopy. Tribol. Trans. 41, 69–77 (1998)CrossRefGoogle Scholar
  148. 148.
    Martin, J.M., Grossiord, C., Varlot, K., Vacher, B., Igarashi, J.: Synergistic effects in binary systems of lubricant additives: a chemical hardness approach. Tribol. Lett. 8, 193–201 (2000)CrossRefGoogle Scholar
  149. 149.
    Graham, J., Jensen, R., Spikes, H.A.: The friction-reducing properties of molybdenum dialkyldithiocarbamate additives. Part 2. Durability of friction reducing capability. Tribol. Trans. 44, 637–646 (2001)CrossRefGoogle Scholar
  150. 150.
    Morina, A., Neville, A.: Understanding the composition and low friction tribofilm formation/removal in boundary lubrication. Tribol. Int. 40, 1696–1704 (2007)CrossRefGoogle Scholar
  151. 151.
    Spikes, H.A.: Additive-additive and additive-surface interactions in lubrication. Lubr. Sci. 2, 3–23 (1989)CrossRefGoogle Scholar
  152. 152.
    Topolovec-Miklozic, K., Cann, P.M., Spikes, H.A.: The use of AFM to study lubricant films. In: Franek, F., et al. (ed.) Plenary and Session Key Papers. 2nd WTC Conference, Vienna (2001)Google Scholar
  153. 153.
    Ye, J., Kano, M., Yasuda, Y.: Determination of nanostructures and mechanical properties on the surface of molybdenum dithiocarbamate and zinc dialkyl-dithiophosphate tribochemical reacted films using atomic force microscope phase imaging technique. J. Appl. Phys. 93, 5113–5117 (2003)CrossRefGoogle Scholar
  154. 154.
    Ye, J., Kano, M., Yasuda, Y.: Evaluation of nanoscale friction depth distribution in ZDDP and MoDTC tribochemical reacted films using a nanoscratch method. Tribol. Lett. 16, 107–112 (2004)CrossRefGoogle Scholar
  155. 155.
    Johnson, M.D., Jensen, R.K., Clausing, E.M., Schriewer, K., Korcek, S.: Effects of aging on frictional properties of fuel efficient engine oils. SAE Technical Paper 952532 (1995)Google Scholar
  156. 156.
    Johnson, M.D., Jensen, R.K., Korcek, S.: Base oil effects on friction reducing capabilities of molybdenum dialkyldithiocarbamate containing engine oils. SAE Technical Paper 972860 (1997)Google Scholar
  157. 157.
    Hoshino, K., Kawai, H., Akiyama, K.: Fuel efficiency of SAE 5 W-20 friction modified gasoline engine oil. SAE Technical Paper 982506 (1998)Google Scholar
  158. 158.
    de Barros’ Bouchet, M.I., Martin, J.M., Le-Mogne, T., Vacher, B.: Boundary lubrication mechanisms of carbon coatings by MoDTC and ZDDP additives. Tribol. Int. 38, 257–264 (2005)CrossRefGoogle Scholar
  159. 159.
    Topolovec-Miklozic, K., Lockwood, F., Spikes, H.: Behaviour of boundary lubricating additives on DLC coatings. Wear 265, 1893–1901 (2008)CrossRefGoogle Scholar
  160. 160.
    Shinyoshi, T., Fuwa, Y., Ozaki, Y.: Wear analysis of DLC coating in oil containing Mo-DTC. SAE Technical Paper 2007-01-1969 (2007)Google Scholar
  161. 161.
    Haque, T., Morina, A., Neville, A., Kapadi, R., Arrowsmith, S.: Effect of oil additives on the durability of hydrogenated DLC coating under boundary lubrication conditions. Wear 266, 147–157 (2009)CrossRefGoogle Scholar
  162. 162.
    Vengudusamy, B., Green, J.H., Lamb, G.D., Spikes, H.A.: Behaviour of MoDTC in DLC/DLC and DLC/steel contacts. Tribol. Int. 54, 68–76 (2012)CrossRefGoogle Scholar
  163. 163.
    Sugimoto, I., Honda, F., Inoue, K.: Analysis of wear behavior and graphitization of hydrogenated DLC under boundary lubricant with MoDTC. Wear 305, 124–128 (2013)CrossRefGoogle Scholar
  164. 164.
    Masuko, M., Ono, T., Aoki, S., Suzuki, A., Ito, H.: Friction and wear characteristics of DLC coatings with different hydrogen content lubricated with several Mo-containing compounds and their related compounds. Tribol. Int. 82, 350–357 (2015)CrossRefGoogle Scholar
  165. 165.
    Coffey, T.A., Forster, G.D., Hogarth, G.: Molybdenum(VI) imidodisulfur complexes formed via double sulfur–carbon bond cleavage of dithiocarbamates. J. Chem. Soc., Dalton Trans. 2, 183–193 (1996)CrossRefGoogle Scholar
  166. 166.
    Sarin, R., Tuli, D.K., Sureshbabu, A.V., Misra, A.K., Rai, M.M., Bhatnagar, A.K.: Molybdenum dialkylphosphorodithioates: synthesis and performance evaluation as multifunctional additives for lubricants. Tribol. Int. 27, 379–386 (1994)CrossRefGoogle Scholar
  167. 167.
    Tanaka, N., Fukushima, A., Tatsumi, Y., Saito, Y.: A molybdenum dithiocarbamate, improved stability and solubility. US Patent 5,627,146, 6 May 1997Google Scholar
  168. 168.
    Tynik, R.J., Donnelly, S.G., Karol, T.J: Additive for lubricating oil compositions, comprising the reaction product of: at least one asymmetrical dialkylamine, carbon disulfide, and a molybdenum source. US Patent 7,763,744, 27 July 2010Google Scholar
  169. 169.
    Yajun, M., Wancheng, Z., Shenghua, L., Yuansheng, J., Yucong, W., Simon, T.: Tribological performance of three advanced piston rings in the presence of MoDTC-modified GF-3 oils. Tribol. Lett. 18, 75–83 (2005)CrossRefGoogle Scholar
  170. 170.
    Hu, J.Q., Wei, X.Y., Dai, G.L., Fei, Y.W., Xie, F., Zong, Z.M.: Tribological behaviors and mechanism of sulfur- and phosphorus-free organic molybdate ester with zinc dialkyldithiophosphate. Tribol. Intern. 41, 549–555 (2008)CrossRefGoogle Scholar
  171. 171.
    Yan, L., Yue, W., Wang, C., Wei, D., Xu, B.: Comparing tribological behaviors of sulfur- and phosphorus-free organomolybdenum additive with ZDDP and MoDTC. Tribol. Int. 53, 150–158 (2012)CrossRefGoogle Scholar
  172. 172.
    Okrent, E.H.: The effect of lubricant viscosity and composition on engine friction and bearing wear. ASLE Trans. 4, 97–108 (1961)CrossRefGoogle Scholar
  173. 173.
    Okrent, E.H.: The effect of lubricant viscosity and composition on engine friction and bearing wear. II. ASLE Trans. 4, 257–262 (1961)CrossRefGoogle Scholar
  174. 174.
    Cann, P.M., Spikes, H.A.: The behavior of polymer solutions in concentrated contacts: immobile surface layer formation. Tribol. Trans. 37, 580–586 (1994)CrossRefGoogle Scholar
  175. 175.
    Georges, J.M., Millot, S., Loubet, J.L., Tonck, A.: Drainage of thin liquid films between relatively smooth surfaces. J. Chem. Phys. 98, 7345–7360 (1993)CrossRefGoogle Scholar
  176. 176.
    Smeeth, M., Gunsel, S., Spikes, H.A.: Boundary film formation by viscosity index improvers. Tribol. Trans. 39, 726–734 (1996)CrossRefGoogle Scholar
  177. 177.
    Guangteng, G., Smeeth, M., Cann, P.M., Spikes, H.A.: Measurement and modelling of boundary film properties of polymeric lubricant additives. Proc. Inst. Mech. Eng. J. 210, 1–15 (1996)CrossRefGoogle Scholar
  178. 178.
    Smeeth, M., Gunsel, S., Spikes, H.A.: Friction and wear reduction by boundary film-forming viscosity index improvers. SAE Technical Paper 962037 (1996)Google Scholar
  179. 179.
    Georges, E., Georges, J.M., Diraison, C.: Rheology of olefinic copolymer layers adsorbed on solid surfaces. Tribol. Trans. 39, 563–570 (1996)CrossRefGoogle Scholar
  180. 180.
    Müller, M., Topolovec-Miklozic, K., Dardin, A., Spikes, H.A.: The design of boundary film-forming PMA viscosity modifiers. Tribol. Trans. 49, 225–232 (2006)CrossRefGoogle Scholar
  181. 181.
    Fan, J., Stohr, T., Muller, M., Spikes, H.A.: Reduction of friction by functionalized viscosity index improvers. Tribol. Lett. 28, 287–298 (2007)CrossRefGoogle Scholar
  182. 182.
    Munch, M.R., Gast, A.P.: A study of block copolymer adsorption kinetics via internal reflection interferometry. J. Chem. Soc., Faraday Trans. 86, 1341–1348 (1990)CrossRefGoogle Scholar
  183. 183.
    Chevalier, Y., Fixari, B., Brunel, S., Marie, E., De Guio, P.: Review: the adsorption of functional polymers from their organic solutions: applications to fuel additives. Polym. Int. 53, 475–483 (2004)CrossRefGoogle Scholar
  184. 184.
    Brittain, W.J., Minko, S.: A structural definition of polymer brushes. J. Polym. Sci. A Polym. Chem. 45, 3505–3512 (2007)CrossRefGoogle Scholar
  185. 185.
    Muller, M., Fan, J., Spikes, H.A.: Design of functionalised PAMA viscosity modifiers to reduce friction and wear in lubricating oils. ASTM Int. 4, Paper ID JAI100956 (2007)Google Scholar
  186. 186.
    Muller, M., Fan, J., Spikes, H.A.: Influence of polymethacrylate viscosity index improvers on friction and wear of lubricant formulations. SAE Technical Paper 2007-01-1985 (2007)Google Scholar
  187. 187.
    Thompson, L, Randles, S.J., Boyde, S., Gamwell, J., Readman, N.: Friction reducing additive. US Patent Appl. 13/582,589, 3 March 2011Google Scholar
  188. 188.
    Lee, S., Müller, M., Ratoi-Salagean, M., Vörös, J., Pasche, S., De Paul, S.M., Spikes, H.A., Textor, M., Spencer, N.D.: Boundary lubrication of oxide surfaces by poly(l-lysine)-g-poly (ethylene glycol)(PLL-g-PEG) in aqueous media. Tribol. Lett. 15, 231–239 (2003)CrossRefGoogle Scholar
  189. 189.
    Müller, M., Lee, S., Spikes, H.A., Spencer, N.D.: The influence of molecular architecture on the macroscopic lubrication properties of the brush-like co-polyelectrolyte poly(l-lysine)-g-poly (ethylene glycol)(PLL-g-PEG) adsorbed on oxide surfaces. Tribol. Lett. 15, 395–405 (2003)CrossRefGoogle Scholar
  190. 190.
    Yan, X., Perry, S.S., Spencer, N.D., Pasche, S., De Paul, S.M., Textor, M., Lim, M.S.: Reduction of friction at oxide interfaces upon polymer adsorption from aqueous solutions. Langmuir 20, 423–428 (2004)CrossRefGoogle Scholar
  191. 191.
    Müller, M.T., Yan, X., Lee, S., Perry, S.S., Spencer, N.D.: Lubrication properties of a brushlike copolymer as a function of the amount of solvent absorbed within the brush. Macromolecules 38, 5706–5713 (2005)CrossRefGoogle Scholar
  192. 192.
    Klein, J., Kumacheva, E., Mahalu, D., Perahia, D., Fetters, L.J.: Reduction of frictional forces between solid surfaces bearing polymer brushes. Nature 370, 634–636 (1994)CrossRefGoogle Scholar
  193. 193.
    Kreer, T., Müser, M.H., Binder, K., Klein, J.: Frictional drag mechanisms between polymer-bearing surfaces. Langmuir 17, 7804–7813 (2001)CrossRefGoogle Scholar
  194. 194.
    Klein, J.: Molecular mechanisms of synovial joint lubrication. Proc. Inst. Mech. Eng. J. 220, 691–710 (2006)CrossRefGoogle Scholar
  195. 195.
    Klein, J., Kumacheva, E., Perahia, D., Fetters, L.J.: Shear forces between sliding surfaces coated with polymer brushes: the high friction regime. Acta Polym. 49, 617–625 (1998)CrossRefGoogle Scholar
  196. 196.
    Nomura, A., Okayasu, K., Ohno, K., Fukuda, T., Tsujii, Y.: Lubrication mechanism of concentrated polymer brushes in solvents: effect of solvent quality and thereby swelling state. Macromolecules 44, 5013–5019 (2011)CrossRefGoogle Scholar
  197. 197.
    Bielecki, R.M., Benetti, E.M., Kumar, D., Spencer, N.D.: Lubrication with oil-compatible polymer brushes. Tribol. Lett. 45, 477–487 (2012)CrossRefGoogle Scholar
  198. 198.
    Mitsui, H., Spikes, H.A.: Predicting EHD film thickness of lubricant polymer solutions. Tribol. Trans. 41, 1–10 (1998)CrossRefGoogle Scholar
  199. 199.
    Mertes, R.W.: Modified lubricating oil. US Patent No. 2,501,731, 28 March 1950Google Scholar
  200. 200.
    Peri, J.B.: The state of dispersion of detergent additives in lubricating oil and other hydrocarbons. J. Am. Oil Chem. Soc. 35, 110–117 (1958)CrossRefGoogle Scholar
  201. 201.
    Mansot, J.L., Hallouis, M., Martin, J.M.: Colloidal antiwear additives. 2. Tribological behaviour of colloidal additives in mild wear regime. Colloids Surf. A 75, 25–31 (1993)CrossRefGoogle Scholar
  202. 202.
    Topolovec-Miklozic, K., Forbus, T.R., Spikes, H.A.: The film-forming and friction properties of overbased calcium sulphonate detergents. Tribol. Lett. 29, 33–44 (2008)CrossRefGoogle Scholar
  203. 203.
    Bennington, J.E., Cole, D.E., Ghirla, P.J., Smith, R.K.: Stable colloid additives for engine oils—potential improvement in fuel economy. SAE Technical Paper 750677 (1975)Google Scholar
  204. 204.
    Reick, F.G.: Lubricant oil containing polytetrafluoroethylene and fluorochemical surfactant. US Patent No. 4,224,173, 23 Sept 1980Google Scholar
  205. 205.
    Reick, F.G.: Energy saving lubricants containing colloidal PTFE. Lubr. Eng. 38, 635–646 (1982)Google Scholar
  206. 206.
    Chinas, F.C.: The behaviour of colloids in lubricated contacts. PhD Thesis, University of London (2000)Google Scholar
  207. 207.
    Bakunin, V.N., Suslov, AYu., Kuzmina, G.N., Parenago, O.P.: Recent achievements in the synthesis and application of inorganic nanoparticles as lubricant components. Lubr. Sci. 17, 127–145 (2005)CrossRefGoogle Scholar
  208. 208.
    Martin, J.M., Ohmae, N.: Nanolubricants, vol. 13. Wiley, New York (2008)CrossRefGoogle Scholar
  209. 209.
    Zhou, J., Wu, Z., Zhang, Z., Liu, W., Xue, Q.: Tribological behaviour and lubricating mechanism of Cu nanoparticles in oil. Tribol. Lett. 8, 213–218 (2000)CrossRefGoogle Scholar
  210. 210.
    Qiu, S., Zhou, Z., Dong, J., Chen, G.: Preparation of Ni nanoparticles and evaluation of their tribological performance as potential antiwear additives in oils. Trans. ASME. J. Tribol. 123, 441–443 (2001)CrossRefGoogle Scholar
  211. 211.
    Chinas-Castillo, F., Spikes, H.A.: The behavior of colloidal solid particles in elastohydrodynamic contacts. Tribol. Trans. 43, 387–394 (2000)CrossRefGoogle Scholar
  212. 212.
    Chinas-Castillo, F., Spikes, H.A.: The lubricating properties of dilute colloidal solid dispersions. In: Proceedings of ITC Conference, Nagasaki, Oct. 2000, vol. 1, pp. 649–654. Publ. JST 2001, TokyoGoogle Scholar
  213. 213.
    Xue, Q., Liu, W., Zhang, Z.: Friction and wear properties of a surface-modified TiO2 nanoparticle as an additive in liquid paraffin. Wear 213, 29–32 (1997)CrossRefGoogle Scholar
  214. 214.
    Hu, Z.S., Dong, J.X., Chen, G.X.: Study of antiwear and reducing friction additive of nanometer ferric oxide. Tribol. Int. 31, 355–360 (1998)CrossRefGoogle Scholar
  215. 215.
    Zhang, Z., Liu, W., Xue, Q.: Study of lubricating mechanism of La(OH)3 nanocluster modified by compound containing nitrogen in liquid paraffin. Wear 218, 139–144 (1998)CrossRefGoogle Scholar
  216. 216.
    Battez, A., Hernández, R., González, J.L., Viesca, J.L., Fernández, J.E., Díaz Fernández, J.M., Machado, A., Chou, R., Riba, J.: CuO, ZrO2 and ZnO nanoparticles as antiwear additive in oil lubricants. Wear 265, 422–428 (2008)CrossRefGoogle Scholar
  217. 217.
    Gupta, B.K., Bhushan, B.: Fullerene particles as an additive to liquid lubricants and greases for low friction and wear. Lubr. Eng. 50, 524–528 (1994)Google Scholar
  218. 218.
    Ginzburg, B.M., Kireenko, O.F., Shepelevskii, A.A., Shibaev, L.A., Tochilnikov, D.G., Leksovskii, A.M.: Thermal and tribological; properties of fullerene-containing composite systems. Part 2. Formation of tribo-polymer films during boundary sliding friction in the presence of fullerene C60. J. Macromol. Sci. B 44, 93–115 (2005)CrossRefGoogle Scholar
  219. 219.
    Joly-Pottuz, L., Vacher, B., Ohmae, N., Martin, J.M., Epicier, T.: Anti-wear and friction reducing mechanisms of carbon nano-onions as lubricant additives. Tribol. Lett. 30, 69–80 (2008)CrossRefGoogle Scholar
  220. 220.
    Chen, C.S., Chen, X.H., Xu, L.S., Yang, Z., Li, W.H.: Modification of multi-walled carbon nanotubes with fatty acid and their tribological properties as lubricant additive. Carbon 43, 1660–1666 (2005)CrossRefGoogle Scholar
  221. 221.
    Peng, Y., Hu, Y., Wang, H.: Tribological behaviors of surfactant-functionalized carbon nanotubes as lubricant additives in water. Tribol. Lett. 25, 247–253 (2006)CrossRefGoogle Scholar
  222. 222.
    Zhang, W., Zhou, M., Zhu, H., Tian, Y., Wang, K., Wei, J., Ji, F., Li, X., Zhang, P., Wu, D.: Tribological properties of oleic acid-modified graphene as lubricant oil additives. J. Phys. D Appl. Phys. 44, 205303 (2011)CrossRefGoogle Scholar
  223. 223.
    Lin, J., Wang, L., Chen, G.: Modification of graphene platelets and their tribological properties as a lubricant additive. Tribol. Lett. 41, 209–215 (2011)CrossRefGoogle Scholar
  224. 224.
    Eswaraiah, V., Sankaranarayanan, V., Ramaprabhu, S.: Graphene-based engine oil nanofluids for tribological applications. ACS Appl. Mater. Interface 3, 4221–4227 (2011)CrossRefGoogle Scholar
  225. 225.
    Choudhary, S., Mungse, H.P., Khatri, O.P.: Dispersion of alkylated graphene in organic solvents and its potential for lubrication applications. J. Mater. Chem. 22, 21032–21039 (2012)CrossRefGoogle Scholar
  226. 226.
    Cizaire, L., Vacher, B., Le Mogne, T., Martin, J.M., Rapoport, L., Margolin, A., Tenne, R.: Mechanisms of ultra-low friction by hollow inorganic fullerene-like MoS2 nanoparticles. Surf. Coat. 160, 282–287 (2002)CrossRefGoogle Scholar
  227. 227.
    Tenne, R.: Inorganic nanotubes and fullerene-like nanoparticles. Nat. Nanotech. 1, 103–111 (2006)CrossRefGoogle Scholar
  228. 228.
    Joly-Pottuz, L., Dassenoy, F., Belin, M., Vacher, B., Martin, J.M., Fleischer, N.: Ultra-low friction and wear properties of IF-WS2 under boundary lubrication. Tribol. Lett. 18, 477–485 (2005)CrossRefGoogle Scholar
  229. 229.
    Tevet, O., Von-Huth, P., Popovitz-Biro, R., Rosentsveig, R., Wagner, H.D., Tenne, R.: Friction mechanism of individual multilayered nanoparticles. Proc. Natl. Acad. Sci. 108, 19901–19906 (2011)CrossRefGoogle Scholar
  230. 230.
    Lahouij, I., Dassenoy, F., de Knoop, L., Martin, J.M., Vacher, B.: In situ TEM observation of the behavior of an individual fullerene-like MoS2 nanoparticle in a dynamic contact. Tribol. Lett. 42, 133–140 (2011)CrossRefGoogle Scholar
  231. 231.
    Kimura, Y., Wakabayashi, T., Okada, K., Wada, T., Nishikawa, H.: Boron nitride as a lubricant additive. Wear 232, 199–206 (1999)CrossRefGoogle Scholar
  232. 232.
    Reeves, C.J., Menezes, P.L., Lovell, M.R., Jen, T.-C.: The size effect of boron nitride particles on the tribological performance of biolubricants for energy conservation and sustainability. Tribol. Lett. 51, 437–452 (2013)CrossRefGoogle Scholar
  233. 233.
    Lovell, M.R., Kabir, M.A., Menezes, P.L., Higgs, C.F.: Influence of boric acid additive size on green lubricant performance. Philos. Trans. R. Soc. Lond. A368, 4851–4868 (2010)CrossRefGoogle Scholar
  234. 234.
    Rabaso, P., Ville, F., Dassenoy, F., Diaby, M., Afanasiev, P., Cavoret, J., Vacher, B., Le Mogne, T.: Boundary lubrication: influence of the size and structure of inorganic fullerene-like MoS2 nanoparticles on friction and wear reduction. Wear 320, 161–178 (2014)CrossRefGoogle Scholar
  235. 235.
    Chinas Castillo, F., Spikes, H.A.: Mechanism of action of colloidal solid dispersions. Trans. ASME J. Tribol. 125, 552–557 (2003)CrossRefGoogle Scholar
  236. 236.
    Chauveau, V., Mazuyer, D., Dassenoy, F., Cayer-Barrioz, J.: In situ film-forming and friction-reduction mechanisms for carbon-nanotube dispersions in lubrication. Tribol. Lett. 47, 467–480 (2012)CrossRefGoogle Scholar
  237. 237.
    Perfiliev, V., Moshkovith, A., Verdyan, A., Tenne, R., Rapoport, L.: A new way to feed nanoparticles to friction interfaces. Tribol. Lett. 21, 89–93 (2006)CrossRefGoogle Scholar
  238. 238.
    Olomolehin, Y., Kapadia, R.G., Spikes, H.A.: Antagonistic interaction of antiwear additives and carbon black. Tribol. Lett. 37, 49–58 (2009)CrossRefGoogle Scholar
  239. 239.
    Yamamoto, K., Kotaka, A., Umehara, K.: Additives for improving the fuel economy of diesel engine systems. Tribol. Online 5, 195–198 (2010)CrossRefGoogle Scholar
  240. 240.
    Ramachandran, S., Tsai, B.L., Blanco, M., Chen, H., Tang, Y., Goddard, W.A.: Self-assembled monolayer mechanism for corrosion inhibition of iron by imidazolines. Langmuir 12, 6419–6428 (1996)CrossRefGoogle Scholar
  241. 241.
    Lundgren, S.M., Eriksson, K., Rossenaar, B.: Boosting the friction performance of amine friction modifiers with MoDTC. SAE Int. J. Fuels Lubr. 8, 827–830 (2015)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Tribology GroupImperial College LondonLondonUK

Personalised recommendations