Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Construction of Highly Ordered Fluorinated Graphene Composite Coatings with Various Fluorine Contents for Enhanced Lubrication Performance

  • 698 Accesses

  • 10 Citations

Abstract

The presence of fluorine makes fluorinated graphene (FG) exhibit extraordinary properties and provides effective route to engineer and modulate the surface and interface properties, which endows FG with promising prospect as ultrathin solid lubricant. Herein for the first time, a strongly integrated FG composite coating was fabricated by facile and scalable solution-based process. The pretreatment with alkali hydroxides both enhances the dispersibility of FG in aqueous medium and realizes the control of fluorine content. The incorporated dopamine could simultaneously function as adhesion and mechanical buffer layer. The as-prepared coatings almost show the full coverage (>90 %) of FG nanosheets over centimeter scale substrates with uniform thickness of 2.36–2.66 nm. The synthesis–structure–performance relationship, particularly the influence of fluorine content and coating structure on the lubricating properties, has been systematically investigated and discussed. Based on this fascinating testing platform, the results of tribological investigations demonstrate the composite coating with higher fluorine content has more stable friction state, lower friction coefficient, and longer duration.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

References

  1. 1.

    Novoselov, K.S., Falko, V.I., Colombo, L., Gellert, P.R., Schwab, M.G., Kim, K.: A roadmap for graphene. Nature 490(7419), 192–200 (2012)

  2. 2.

    Xu, Y., Bai, H., Lu, G., Li, C., Shi, G.: Flexible graphene films via the filtration of water-soluble noncovalent functionalized graphene sheets. J. Am. Chem. Soc. 130(18), 5856–5857 (2008)

  3. 3.

    Sofo, J.O., Chaudhari, A.S., Barber, G.D.: Graphane: a two-dimensional hydrocarbon. Phys. Rev. B 75(15), 153401 (2007)

  4. 4.

    Elias, D.C., Nair, R.R., Mohiuddin, T.M.G., Morozov, S.V., Blake, P., Halsall, M.P., Ferrari, A.C., Boukhvalov, D.W., Katsnelson, M.I., Geim, A.K., Novoselov, K.S.: Control of graphene’s properties by reversible hydrogenation: evidence for graphane. Science 323(5914), 610–613 (2009)

  5. 5.

    Karlický, F., Datta, K.K.R., Otyepka, M., Zbořil, R.: Halogenated graphenes: rapidly growing family of graphene derivatives. ACS Nano 7(8), 6434–6464 (2013)

  6. 6.

    Touhara, H., Okino, F.: Property control of carbon materials by fluorination. Carbon 38(2), 241–267 (2000)

  7. 7.

    Dubecký, M., Otyepková, E., Lazar, P., Karlický, F., Petr, M., Čépe, K., Banáš, P., Zbořil, R., Otyepka, M.: Reactivity of fluorographene: a facile way toward graphene derivatives. J. Phys. Chem. Lett. 6(8), 1430–1434 (2015)

  8. 8.

    Huang, W., Pei, Q.X., Liu, Z., Zhang, Y.W.: Thermal conductivity of fluorinated graphene: a non-equilibrium molecular dynamics study. Chem. Phys. Lett. 552, 97–101 (2012)

  9. 9.

    Singh, S.K., Costamagna, S., Neek-Amal, M., Peeters, F.M.: Melting of partially fluorinated graphene: from detachment of fluorine atoms to large defects and random coils. J. Phys. Chem. C 118(8), 4460–4464 (2014)

  10. 10.

    Nair, R.R., Ren, W., Jalil, R., Riaz, I., Kravets, V.G., Britnell, L., Blake, P., Schedin, F., Mayorov, A.S., Yuan, S., Katsnelson, M.I., Cheng, H.M., Strupinski, W., Bulusheva, L.G., Okotrub, A.V., Grigorieva, I.V., Grigorenko, A.N., Novoselov, K.S., Geim, A.K.: Fluorographene: a two-dimensional counterpart of teflon. Small 6(24), 2877–2884 (2010)

  11. 11.

    Zbořil, R., Karlický, F., Bourlinos, A.B., Steriotis, T.A., Stubos, A.K., Georgakilas, V., Šafářová, K., Jančík, D., Trapalis, C., Otyepka, M.: Graphene fluoride: a stable stoichiometric graphene derivative and its chemical conversion to graphene. Small 6(24), 2885–2891 (2010)

  12. 12.

    Leenaerts, O., Peelaers, H., Hernández-Nieves, A.D., Partoens, B., Peeters, F.M.: First-principles investigation of graphene fluoride and graphane. Phys. Rev. B 82(19), 195436 (2010)

  13. 13.

    Fusaro, R.L., Sliney, H.E.: Graphite fluoride (CFx)n—a new solid lubricant. ASLE Trans. 13(1), 56–65 (1970)

  14. 14.

    Biswas, S.K., Vijayan, K.: Friction and wear of PTFE—a review. Wear 158(1), 193–211 (1992)

  15. 15.

    Subhash, G., Corwin, A.D., de Bore, M.P.: Evolution of wear characteristics and frictional behavior in MEMS devices. Tribol. Lett. 41(1), 177–189 (2011)

  16. 16.

    Cheng, S.H., Zou, K., Gutierrez, H.R., Gupta, A., Shen, N., Eklund, P.C., Sofo, J.O., Zhu, J.: Reversible fluorination of graphene: evidence of a two-dimensional wide bandgap semiconductor. Phys. Rev. B 81(20), 205435 (2010)

  17. 17.

    Withers, F., Bointon, T.H., Dubois, M., Russo, S., Craciun, M.F.: Nanopatterning of fluorinated graphene by electron beam irradiation. Nano Lett. 11(9), 3912–3916 (2011)

  18. 18.

    Wang, Y., Lee, W.C., Manga, K.K., Ang, P.K., Lu, J., Liu, Y.P., Lim, C.T.: Fluorinated graphene for promoting neuro-induction of stem cells. Adv. Mater. 24(31), 4285–4290 (2012)

  19. 19.

    Kwon, S., Ko, J., Jeon, K., Kim, Y., Park, J.Y.: Enhanced nanoscale friction on fluorinated graphene. Nano Lett. 12(12), 6043–6048 (2012)

  20. 20.

    Ko, J., Kwon, S., Byun, I., Choi, J.S., Park, B.H., Kim, Y., Park, J.Y.: Nanotribological properties of fluorinated, hydrogenated, and oxidized graphenes. Tribol. Lett. 50(2), 137–144 (2013)

  21. 21.

    Li, Q., Liu, X.Z., Kim, S.P., Shenoy, V.B., Sheehan, P.E., Robinson, J.T., Carpick, R.W.: Fluorination of graphene enhances friction due to increased corrugation. Nano Lett. 14(9), 5212–5217 (2014)

  22. 22.

    Mathkar, A., Narayanan, T.N., Alemany, L.B., Cox, P., Nguyen, P., Gao, G., Chang, P., Romero-Aburto, R., Mani, S.A., Ajayan, P.M.: Synthesis of fluorinated graphene oxide and its amphiphobic properties. Part. Part. Syst. Charact. 30(3), 266–272 (2013)

  23. 23.

    Gong, P., Wang, Z., Wang, J., Wang, H., Li, Z., Fan, Z.: One-pot sonochemical preparation of fluorographene and selective tuning of its fluorine coverage. J. Mater. Chem. 22, 16950–16956 (2012)

  24. 24.

    Worsley, K.A., Ramesh, P., Mandal, S.K., Niyogi, S., Itkis, M.E., Haddon, R.C.: Soluble graphene derived from graphite fluoride. Chem. Phys. Lett. 445(1–3), 51–56 (2007)

  25. 25.

    Valentini, L., Cardinali, M., BittoloBon, S., Bagnis, D., Verdejo, R., Lopez-Manchado, M.A., Kenny, J.M.: Use of butylamine modified graphene sheets in polymer solar cells. J. Mater. Chem. 20, 995–1000 (2010)

  26. 26.

    Bourlinos, A.B., Georgakilas, V., Zbořil, R., Jancik, D., Karakassides, M.A., Stassinopoulos, A., Anglos, D., Giannelis, E.P.: Reaction of graphite fluoride with NaOH-KOH eutectic. J. Fluor. Chem. 129(8), 720–724 (2008)

  27. 27.

    Koenig, S.P., Boddeti, N.G., Dunn, M.L., Bunch, J.S.: Ultrastrong adhesion of graphene membranes. Nat. Nanotechnol. 6, 543–546 (2011)

  28. 28.

    Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coatings. Science 318(5849), 426–430 (2007)

  29. 29.

    Lee, H., Scherer, N.F., Messersmith, P.B.: Single-molecule mechanics of mussel adhesion. Proc. Natl. Acad. Sci. U.S.A. 103(35), 12999–13003 (2006)

  30. 30.

    Cui, W., Li, M., Liu, J., Wang, B., Zhang, C., Jiang, L., Cheng, Q.: A strong integrated strength and toughness artificial nacre based on dopamine cross-linked graphene oxide. ACS Nano 8(9), 9511–9517 (2014)

  31. 31.

    Liebscher, J., Mrówczyński, R., Scheidt, H.A., Filip, C., Hǎdade, N.D., Turcu, R., Bende, A., Beck, S.: Structure of polydopamine: A never-ending story? Langmuir 29(33), 10539–10548 (2013)

  32. 32.

    Ou, J., Wang, J., Liu, S., Zhou, J., Yang, S.: Self-assembly and tribological property of a novel 3-layer organic film on silicon wafer with polydopamine coating as the interlayer. J. Phys. Chem. C 113(47), 20429–20434 (2009)

  33. 33.

    Bourlinos, A.B., Safarova, K., Siskova, K., Zbořil, R.: The production of chemically converted graphenes from graphite fluoride. Carbon 50(3), 1425–1428 (2012)

  34. 34.

    Meduri, P., Chen, H., Xiao, J., Martinez, J.J., Carlson, T., Zhang, J.G., Deng, Z.D.: Tunable electrochemical properties of fluorinated graphene. J. Mater. Chem. A 1(27), 7866–7869 (2013)

  35. 35.

    Bao, C., Song, L., Xing, W., Yuan, B., Wilkie, C.A., Huang, J., Guo, Y., Hu, Y.: Preparation of graphene by pressurized oxidation and multiplex reduction and its polymer nanocomposites by masterbatch-based melt blending. J. Mater. Chem. 22(13), 6088–6096 (2012)

  36. 36.

    Ou, J., Wang, J., Liu, S., Mu, B., Ren, J., Wang, H., Yang, S.: Tribology study of reduced graphene oxide sheets on silicon substrate synthesized via covalent assembly. Langmuir 26(20), 15830–15836 (2010)

  37. 37.

    Stine, R., Ciszek, J.W., Barlow, D.E., Lee, W., Robinson, J.T., Sheehan, P.E.: High-density amine-terminated monolayers formed on fluorinated CVD-grown graphene. Langmuir 28(21), 7957–7961 (2012)

  38. 38.

    Bulusheva, L.G., Tur, V.A., Fedorovskaya, E.O., Asanov, I.P., Pontiroli, D., Riccò, M., Okotrub, A.V.: Structure and supercapacitor performance of graphene materials obtained from brominated and fluorinated graphites. Carbon 78, 137–146 (2014). doi:10.1016/j.carbon.2014.06.061

  39. 39.

    Gong, P., Wang, J., Sun, W., Wu, D., Wang, Z., Fan, Z., Wang, H., Han, X., Yang, S.: Tunable photoluminescence and spectrum split from fluorinated to hydroxylated graphene. Nanoscale 6(6), 2616–2624 (2014)

  40. 40.

    Mickelson, E.T., Huffman, C.B., Rinzler, A.G., Smalley, R.E., Hauge, R.H., Margrave, J.L.: Fluorination of single-wall carbon nanotubes. Chem. Phys. Lett. 296(1), 188–194 (1998)

  41. 41.

    Jeon, K., Lee, Z., Pollak, E., Moreschini, L., Bostwick, A., Park, C., Mendelsberg, R., Radmilovic, V., Kostecki, R., Richardson, T.J., Rotenberg, E.: Fluorographene: a wide bandgap semiconductor with ultraviolet luminescence. ACS Nano 5(2), 1042–1046 (2011)

  42. 42.

    Yang, H., Chen, M., Zhou, H., Qiu, C., Hu, L., Yu, F., Chu, W., Sun, S., Sun, L.: Preferential and reversible fluorination of monolayer graphene. J. Phys. Chem. C 115(34), 16844–16848 (2011)

  43. 43.

    Withers, F., Russo, S., Dubois, M., Craciun, M.F.: Tuning the electronic transport properties of graphene through functionalisation with fluorine. Nanoscale Res. Lett. 6(1), 1–11 (2011)

  44. 44.

    Stankovich, S., Dikin, D.A., Piner, R.D., Kohlhaas, K.A., Kleinhammes, A., Jia, Y., Wu, Y., Nguyen, S.T., Ruoff, R.S.: Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45(7), 1558–1565 (2007)

  45. 45.

    Hou, K., Gong, P., Wang, J., Yang, Z., Wang, Z., Yang, S.: Structural and tribological characterization of fluorinated graphene with various fluorine contents prepared by liquid-phase exfoliation. RSC Adv. 4(100), 56543–56551 (2014)

  46. 46.

    Rosentsveig, R., Gorodnev, A., Feuerstein, N., Friedman, H., Zak, A., Fleischer, N., Tannous, J., Dassenoy, F., Tenne, R.: Fullerene-like MoS2 nanoparticles and their tribological behavior. Tribol. Lett. 36(2), 175–182 (2009)

  47. 47.

    Greenberg, R., Halperin, G., Etsion, I., Tenne, R.: The effect of WS2 nanoparticles on friction reduction in various lubrication regimes. Tribol. Lett. 17(2), 179–186 (2004)

  48. 48.

    Robinson, J.T., Burǵess, J.S., Junkermeier, C.E., Badescu, S.C., Reinecke, T.L., Perkins, F.K., Zalalutdniov, M.K., Baldwin, J.W., Culbertson, J.C., Sheehan, P.E., Snow, E.S.: Properties of fluorinated graphene films. Nano Lett. 10(8), 3001–3005 (2010)

  49. 49.

    Kim, S., Lee, C., Yun, J., Noh, Y., Kim, S., Lee, S., Jo, S.M., Joh, H., Na, S.: Fluorine-functionalized and simultaneously reduced graphene oxide as a novel hole transporting layer for highly efficient and stable organic photovoltaic cells. Nanoscale 6(13), 7183–7187 (2014)

  50. 50.

    Zhao, F., Zhao, G., Liu, X., Ge, C., Wang, J., Li, B., Wang, Q., Li, W., Chen, Q.: Fluorinated graphene: facile solution preparation and tailorable properties by fluorine-content tuning. J. Mater. Chem. A 2(23), 8782–8879 (2014)

  51. 51.

    Park, S., An, J., Piner, R.D., Jung, I., Yang, D., Velamakanni, A., Nguyen, S.T., Ruoff, R.S.: Aqueous suspension and characterization of chemically modified graphene sheets. Chem. Mater. 20(21), 6592–6594 (2008)

  52. 52.

    Sato, Y., Itoh, K., Hagiwara, R., Fukunaga, T., Ito, Y.: On the so-called “semi-ionic” C–F bond character in fluorine-GIC. Carbon 42(15), 3243–3249 (2004)

  53. 53.

    Claves, D.: Spectroscopic study of fluorinated carbon nanostructures. New J. Chem. 35(11), 2477–2482 (2011)

  54. 54.

    Vyalikh, A., Bulusheva, L.G., Chekhova, G.N., Pinakov, D.V., Okotrub, A.V., Scheler, U.: Fluorine patterning in room-temperature fluorinated graphite determined by solid-state NMR and DFT. J. Phys. Chem. C 117(15), 7940–7948 (2013)

  55. 55.

    Berman, D., Deshmukh, S.A., Sankaranarayanan, S.K.R.S., Erdemir, A., Sumant, A.V.: Extraordinary macroscale wear resistance of one atom thick graphene layer. Adv. Funct. Mater. 24(42), 6640–6646 (2014)

  56. 56.

    Berman, D., Erdemir, A., Sumant, A.V.: Reduced wear and friction enabled by graphene layers on sliding steel surfaces in dry nitrogen. Carbon 59, 167–175 (2013)

Download references

Acknowledgments

The authors thank the financial support from the National Natural Science Foundation of China (Grant Nos. 51375474 and 51205385) and the “Funds for Young Scientists of Gansu Province (Grant No. 145RJYA280)”.

Author information

Correspondence to Jinqing Wang or Shengrong Yang.

Electronic Supplementary Material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 8250 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, K., Gong, P., Wang, J. et al. Construction of Highly Ordered Fluorinated Graphene Composite Coatings with Various Fluorine Contents for Enhanced Lubrication Performance. Tribol Lett 60, 6 (2015). https://doi.org/10.1007/s11249-015-0586-2

Download citation

Keywords

  • Fluorinated graphene
  • Multilayer coating
  • Friction
  • Atomic force microscopy