Tribology Letters

, 60:9 | Cite as

FZG Gear Efficiency and Pin-on-Disc Frictional Study of Sintered and Wrought Steel Gear Materials

  • Xinmin Li
  • Ulf Olofsson
Original Paper
Part of the following topical collections:
  1. STLE Tribology Frontiers Conference 2014


Load-dependent power loss is a major contributor to power loss in gear transmission systems. In this study, pin-on-disc frictional and FZG efficiency experiments were conducted with powder metallurgy (Distaloy AQ + 0.2 %C) and wrought material (16MnCr5) combinations. The gear mesh torque loss from gear efficiency tests and the friction coefficient from the pin-on-disc tests were then compared. The trend for both test series was the same. The combination of 16MnCr5 in contact with Distaloy AQ + 0.2 %C shows the lowest coefficient of friction and gear mesh torque loss, followed by the combination of Distaloy AQ + 0.2 %C in contact with itself and finally the combination of 16MnCr5 in contact with itself.


Friction Gear mesh torque loss Powder metallurgy FZG gear test rig Pin-on-disc 

List of symbols


Powder metallurgy




Distaloy AQ + 0.2 %C




Load (N m)


Total torque loss (N m)


Rotation speed (rpm)


Time (s)


Dynamic viscosity (Pas)


Total power loss (W)


Load-dependent power loss (W)


Load-independent power loss (W)


Rolling friction moment (Nm)


Load-dependent torque loss (Nm)


Surface energy (J)

ρ, ρ0


E, E0

Young’s modulus (Gpa)

ν, ν0

Poisson’s ratio


Number of teeth


Normal module


Gear width (mm)


Pressure angle


Base diameter (mm)


Tip diameter (mm)


Root diameter (mm)


Centre distance (mm)


Helix angle


Sliding friction moment (Nm)


Load-dependent bearing loss (Nm)


Adhesive energy of surface a and b (J)



We would like to thank Dr. Michael Andersson and Persson Marcus from Höganäs AB for their valuable discussion and technological support. This project was financially supported by Höganäs AB.


  1. 1.
    Michaelis, K., Höhn, B.-R., Hinterstoisser, M.: Influence factors on gearbox power loss. Ind. Lubr. Tribol. 63(1), 46–55 (2011)CrossRefGoogle Scholar
  2. 2.
    Petry-Johnson, T., Kahraman, A., Anderson, N.E., Chase, D.: An experimental investigation of spur gear efficiency. J. Mech. Des. 130, 062601-1 (2008). doi: 10.1115/1.2898876 CrossRefGoogle Scholar
  3. 3.
    Naruse, C., Haizuka, S., Nemoto, R., Kurokawa, K.: Studies on frictional loss, temperature rise and limiting load for scoring of spur gears. Bull. JSME 29, 600–608 (1986)CrossRefGoogle Scholar
  4. 4.
    Naruse, C., Nemoto, R., Haizuka, S., Takahashi, H.: Influences of tooth profile in frictional loss and scoring strength in the case of spur gears. JSME International Conference on Motion and Power Transmissions, Hiroshima, Japan, pp. 1078–1083 (1991)Google Scholar
  5. 5.
    Magalhes, L., Martins, R., Locateli, C., Seabra, J.: Influence of tooth profile and oil formulation on gear power loss. Tribol. Int. 43(10), 1861–1871 (2010)CrossRefGoogle Scholar
  6. 6.
    Martins, R., Seabra, J., Brito, A., Seyfert, Ch., Luther, R., Igartua, A.: Friction coefficient in FZG gears lubricated with industrial gear oils: biodegradable ester vs. mineral oil. Tribol. Int. 39, 512–521 (2006)CrossRefGoogle Scholar
  7. 7.
    Britton, R.D., Elcoate, C.D., Alanou, M.P., Evans, H.P., Snidle, R.W.: Effect of surface finish on gear tooth friction. Trans. ASME 122, 354–360 (2000)CrossRefGoogle Scholar
  8. 8.
    Suh, N.P., Sin, H.C.: The genesis of friction. Wear 69, 91–114 (1981)CrossRefGoogle Scholar
  9. 9.
    Van Beek, A.: Advance Engineering Design, pp. 155–158. TU Delft (2009)Google Scholar
  10. 10.
    Wakuda, M., Yamauchi, Y., Kanzaki, S., Yasudac, Y.: Effect of surface texturing on friction reduction between ceramic and steel materials under lubricated sliding contact. Wear 254(3–4), 356–363 (2003)CrossRefGoogle Scholar
  11. 11.
    Pettersson, U., Jacobson, S.: Influence of surface texture on boundary lubricated sliding contacts. Tribol. Int. 36(11), 857–864 (2003)CrossRefGoogle Scholar
  12. 12.
    Kovalchenko, A., Ajayi, O., Erdemir, A., Fenske, G., Etsion, I.: The effect of laser surface texturing on transitions in lubrication regimes during unidirectional sliding contact. Tribol. Int. 38(3), 219–225 (2005)CrossRefGoogle Scholar
  13. 13.
    Li, X., Sosa, M., Olofsson, U.: A pin on disc study of the tribology characteristics of sintered versus standard gear materials. In 16th Nordic Symposium on Tribology, Århus, Denmark (2014)Google Scholar
  14. 14.
    Beiss, P.: Mechanische eigenschaften von sinterstählen. Tagungsband zum Symposium für Pulvermetallurgie: Material-Prozess-Anwendung Hagen 27 (2003)Google Scholar
  15. 15.
    Zhu, Y., Olofsson, U., Chen, H.: Friction between wheel and rail: a pin-on-disc study of environmental conditions and iron oxides. Tribol. Lett. (2013). doi: 10.1007/s11249-013-0220-0 Google Scholar
  16. 16.
    Bergseth, E., Torbacke, M., Olofsson, U.: Wear in environmentally adapted lubricant with AW technology. J. Synth. Lubr. 25, 137–158 (2008)CrossRefGoogle Scholar
  17. 17.
    Winter, H, Michaelis, K.: FZG gear test rig: description and possibilities. In: Coordinate European Council Second International Symposium on The Performance Evaluation Of Automotive Fuels And Lubricants (1985)Google Scholar
  18. 18.
    Sjöberg, S., Sosa, M., Andersson, M., Olofsson, U.: A study of running-in and efficiency of ground gears. Tribol. Int. (accepted)Google Scholar
  19. 19.
    Andersson, M., Sosa, M., Sjöberg, S., Olofsson, U.: Effect of assembly errors in back-to-back gear efficiency testing. In: International Gear Conference, Lyon, France (2014). doi: 10.1533/9781782421955.784
  20. 20.
    SKF, Rolling Bearing Catalogue, pp. 97–114 (2012)Google Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Machine DesignRoyal Institute of Technology (KTH)StockholmSweden

Personalised recommendations