Tribology Letters

, 59:25 | Cite as

Pile Surface Tactile Simulation: Role of the Slider Shape, Texture Close to Fingerprints, and the Joint Stiffness

  • Marie-Ange Bueno
  • Betty Lemaire-Semail
  • Michel Amberg
  • Frédéric Giraud
Original Paper


Stimulating the human hand with a tactile device in order to simulate pile fabric touch is a challenge. The stimulation has to be designed from the friction characteristics of the investigated pile surfaces, i.e. velvet fabrics. The tactile illusion of pile is given when touching the smooth plate of the tactile stimulator STIMTAC by modulating the coefficient of friction between the plate and the finger during an active movement. In a preliminary study, five tribological features as velvet fabric characteristics were identified, used for the design of the stimulator’s control signal, and validated via psychophysical studies where real and simulated fabrics were compared. But a specific tribological feature described and expected by individuals was missing. Then, a tribological investigation has been done in order to obtain this tribological feature, with the five previous ones, by changing experimental conditions: slider shape, texture, and joint stiffness. The obtained results show that a rounded shape of the slider has an influence only on the friction force level, but a texture of the slider close to fingerprints and a joint stiffness is crucial to obtain the missing characteristic and therefore for the pile surface tribological characterization. The role of the fingerprints in touching grooved surfaces has been published before but not for pile surfaces.


Biotribology Tactile stimulation Pile Fibre Textile Finger 



The authors are deeply grateful to all the volunteers from the University of Haute Alsace who participated and gave their time freely.

Conflict of interest

The authors declare that they have no conflict of interest.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Ethical standard

All procedures performed in studies involving human participants were in accordance with the 1964 Helsinki declaration and its later amendments or comparable ethical standards.


  1. 1.
    Khakimdjanova, L., Park, J.: Online visual merchandising practice of apparel e-merchants. J. Retail. Consum. Serv. 12, 307–318 (2005)CrossRefGoogle Scholar
  2. 2.
    Fontana, M., Rizzi, C., Cugini, U.: Physics-based modelling and simulation of functional cloth or virtual prototyping applications. In: Elber, G., Patrikalakis, N., Brunet, P. (eds.) ACM Symposium on Solid Modeling and Applications (2004)Google Scholar
  3. 3.
    Bingi, P., Mir, A., Khamalah, J.: The challenges facing global e-commerce: a multidimensional perspective. Inf. Syst. Manag. J. 17(4), 26–34 (2000)Google Scholar
  4. 4.
    Peck, J., Childers, T.L.: To have and to hold: the influence of haptic information on product judgments. J. Mark. 67, 35–48 (2003)CrossRefGoogle Scholar
  5. 5.
    Varadarajan, P.R., Yadav, M.S.: Marketing strategy and the internet: an organizing framework. J. Acad. Mark. Sci. 30(4), 296–313 (2002). doi: 10.1177/009207002236907 CrossRefGoogle Scholar
  6. 6.
    Loker, S., Ashdown, S., Carnrite, E.: Dress in the third dimension: online interactivity and its new horizons. Cloth. Text. Res. J. 26(2), 164–176 (2008). doi: 10.1177/0887302X08315176 CrossRefGoogle Scholar
  7. 7.
    Luginbühl, T., Delattre, L., Gagalowicz, A.: Towards the automatic generation of 3D photo-realistic avatars using 3D scanned data. Comput. Sci. 6930, 192–203 (2011)Google Scholar
  8. 8.
    Bergin, P.S., Bronstein, A.M., Murray, N.M.F., Sancovic, S., Zeppenfeld, K.: Body sway and vibration perception thresholds in normal aging and in patients with polyneuropathy. J. Neurol. Neurosurg. Psychiatry 58, 335–340 (1995)CrossRefGoogle Scholar
  9. 9.
    Gin, H., Perlemoine, C., Rigalleau, V.: How to better systematize the diagnosis of neuropathy? Diabetes Metab. 32, 367–372 (2006)CrossRefGoogle Scholar
  10. 10.
    Gin, H., Rigalleau, V., Baillet, L., Rabemanantsoa, C.: Comparison between monofilament, tuning fork and vibration perception tests for screening patients at risk of foot complication. Diabetes Metab. 28(6), 457–461 (2002)Google Scholar
  11. 11.
    Nizar, H., Munro, N., Nightingale, P., Feher, M.D.: Diagnostic accuracy of the VibraTip in detection of diabetic peripheral neuropathy. Br. J. Diabetes Vasc. Dis. 14(1), 26–29 (2014)CrossRefGoogle Scholar
  12. 12.
    Breugnot, C., Bueno, M.-A., Ribot-Ciscar, E., Aimonetti, J.-M., Roll, J.-P., Renner, M.: Mechanical discrimination of hairy fabrics from neurosensorial criteria. Text. Res. J. 76(11), 835–846 (2006)CrossRefGoogle Scholar
  13. 13.
    Völkel, T., Weber, G., Baumann, U.: Tactile graphics revised: the novel brailledis 9000 pin-matrix device with multitouch input. In: Miesenberger, K., Klaus, J., Zagler, W., Karshmer, A. (eds.) Computers Helping People with Special Needs, Lecture Notes in Computer Science, vol. 5105, pp. 835–842. Springer, Berlin (2008)CrossRefGoogle Scholar
  14. 14.
    Peruzzini, M., Germani, M., Mengoni, M.: Electro-tactile device for texture simulation. In: IEEE/ASME International Conference on Mechatronics and Embedded Systems and Applications (MESA), pp. 178–183 (2012)Google Scholar
  15. 15.
    Hayward, V., Cruz-Hernandez, J.M.: Tactile display device using distributed tateral skin stretch. In: A.I.M.E.C. (ed.) Exposition, Haptic Interfaces for Virtual Environment and Teleoperator Systems Symposium, Orlando (USA), pp. 1309–1314 (2000)Google Scholar
  16. 16.
    Tatara, N., Mori, M., Maeno, T.: Method for eliciting tactile sensation using vibrating stimuli in tangential direction: effect of frequency, amplitude and wavelength of vibrating stimuli on roughness perception. In: Proceedings of the 33rd ISR (International Symposium on Robotics), p. 6 (2002)Google Scholar
  17. 17.
    Beebe, D.J., Hymel, C.M., Kaczmarek, K.A., Tyler, M.E.: A polyimide-on-silicon electrostatic fingertip tactile display. In: The 17th Annual Conference of the IEEE Engineering in Medicine and Biology Society, pp. 1545–1546 (1995)Google Scholar
  18. 18.
    Poupyrev, I., Maruyama, S., Rekimoto, J.: Ambient touch: designing tactile interfaces for handheld devices. In: Beaudouin-Lafon, M. (ed.) Proceedings of the 15th Annual ACM Symposium on User Interface Software and Technology, Paris (France), pp. 51–60 (2002)Google Scholar
  19. 19.
    Morley, J.W., Goodwin, A.W., Darian-Smith, I.: Tactile discrimination of gratings. Exp. Brain Res. 49, 291–299 (1983)CrossRefGoogle Scholar
  20. 20.
    Gibson, J.J.: Observations on active touch. Psychol. Rev. 69(6), 477–491 (1962)CrossRefGoogle Scholar
  21. 21.
    Lederman, S.J.: The perception of surface roughness by active and passive touch. Bull. Psychon. Soc. 18(5), 253–255 (1981)CrossRefGoogle Scholar
  22. 22.
    Martinot, F., Houzefa, A., Biet, M., Chaillou, C.: Mechanical responses of the fingerpad and distal phalanx to friction of a grooved surface: effect of the contact angle. In: IEEE (ed.) 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, pp. 297–300 (2006)Google Scholar
  23. 23.
    Volino, P., Davy, P., Bonanni, U., Luible, C., Magnenat-Thalmann, N., Mäkinen, M., Meinander, H.: From measured physical parameters to the haptic feeling of fabric. Visual Comput. 23, 133–142 (2007). doi: 10.1007/s00371-006-0034-2 CrossRefGoogle Scholar
  24. 24.
    Allerkamp, D., Böttcher, G., Wolter, F.-E., Brady, A.C., Qu, J., Summers, I.R.: A vibrotactile approach to tactile rendering. Visual Comput. 23(2), 97–108 (2007). doi: 10.1007/s00371-006-0031-5 CrossRefGoogle Scholar
  25. 25.
    Böttcher, G., Allerkamp, D., Glöckner, D., Wolter, F.-E.: Haptic two-finger contact with textiles. Visual Comput. 24, 911–922 (2008). doi: 10.1007/s00371-008-0287-z CrossRefGoogle Scholar
  26. 26.
    Biet, M., Boulon, L., Martinot, F., Giraud, F., Lemaire-semail, B.: Using an ultrasonic transducer: evidence for an anisotropic deprivation of frictional cues in microtexture perception. In: IEEE (ed.) The Second Joint Eurohaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, World Haptics, pp. 385–390 (2007)Google Scholar
  27. 27.
    Watanabe, T., Fukui, S.: A method for controlling tactile sensation of surface roughness using ultrasonic vibration. In: IEEE (ed.) International Conference on Robotics and Automation, Nagoya (Japon), pp. 1134–1139 (1995)Google Scholar
  28. 28.
    Biet, M., Giraud, F., Lemaire-Semail, B.: Squeeze Film Effet for the Design of an Ultrasonic Tactile Plate. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 54(12), 2678–2688 (2007)CrossRefGoogle Scholar
  29. 29.
    Darian-Smith, I.: Chapter 17: the sense of touch: performance and peripheral neural process. In: Mountcastle, J.D. (ed.) Handbook of Physiology, pp. 739–788. Baltimore, William and Wilkins (1984)Google Scholar
  30. 30.
    Morley, J.W., Rowe, M.J.: Perceived pith of vibrotactile stimuli: effects of vibration amplitude, and implications for vibration frequency coding. J. Psychol. 431, 403–416 (1990)Google Scholar
  31. 31.
    Wiesendanger, M.: Squeeze film air bearings using piezoelectric bending elements. Ecole Polytechnique Férérale de Lausanne (2001)Google Scholar
  32. 32.
    Giraud, F., Amberg, M., Lemaire-semail, B., Casiez, G.: Design of a transparent tactile stimulator. In: IEEE Haptics Symposium (HAPTICS), pp. 485–489 (2012)Google Scholar
  33. 33.
    Biet, M., Casiez, G., Giraud, F., Lemaire-semail, B.: Discrimination of virtual square gratings by dynamic touch on friction based tactile displays. In: IEEE (ed.) The 16th Symposium on Haptic Interfaces for Virtual Environments and Teleoperator Systems, Reno (NE, USA), pp. 41–48 (2008)Google Scholar
  34. 34.
    Bueno, M.-A., Bocquet, R., Tourlonias, M., Rossi, R., Derler, S.: Study of Friction mechanisms of hairy textile fabrics. Wear 303, 343–353 (2013). doi: 10.1016/j.wear.2013.03.03 CrossRefGoogle Scholar
  35. 35.
    Breugnot, C., Bueno, M.-A., Ribot-Ciscar, E., Aimonetti, J.-M., Roll, J.-P., Renner, M.: Fabric touch: responses of mechanoreceptive afferent units and mechanical characterization. In: Biochemistry, A.o.P.a. (ed.) Congrès 2004 de la Société de Biomécanique - MecanoTransduction 2004: Biologie - Physiologie - Mécanique, Créteil (France), 2004/10/08 2004. Archives of Physiology and Biochemistry, p. 45 (2004)Google Scholar
  36. 36.
    Maneo, T., Kobayashi, K., Yamazaki, N.: Relationship between the Structure of human finger tissue and the location of tactile receptors. Bul. Jpn. Soc. Mech. Eng. 41(1), 94–100 (1998)Google Scholar
  37. 37.
    Bueno, M.-A., Lemaire-Semail, B., Amberg, M., Giraud, F.: A simulation from a tactile device to render the touch of textile fabrics: a preliminary study on velvet. Text. Res. J. 84, 1428–1440 (2014). doi: 10.1177/0040517514521116 CrossRefGoogle Scholar
  38. 38.
    Hajian, A.Z., Howe, R.D.: Identification of the mechanical impedance at the human finger tip. J. Biomech. Eng. 119, 109–114 (1997)CrossRefGoogle Scholar
  39. 39.
    Kern, T.A., Werthschützky, R.: Studies of the mecahnical impedance of the index finger in multiple dimensions. In: Ferre, M. (ed.) EuroHaptics, pp. 175–180. Springer, Berlin (2008)Google Scholar
  40. 40.
    Milner, T.E., Franklin, D.W.: Characterization of multijoint finger stiffness: dependance on finger posture and force direction. IEEE Trans. Biomed. Eng. 45(11), 1363–1375 (1998)CrossRefGoogle Scholar
  41. 41.
    André, T., Lévesque, V., Hayward, V., Lefèvre, P., Thonnard, J.-L.: Effect of skin hydration on the dynamics of fingertip gripping contact. J. R. Soc. Interface 8, 1574–1583 (2011). doi: 10.1098/rsif.2011.0086 CrossRefGoogle Scholar
  42. 42.
    Levesque, V., Hayward, V.: Experimental evidence of lateral skin strain during tactile exploration. In: EuroHaptics, pp. 261–275 (2003)Google Scholar
  43. 43.
    Terekhov, A.V., Hayward, V.: Minimal adhesion surface area in tangentially loaded digital contacts. J. Biomech. 44, 2508–2510 (2011)CrossRefGoogle Scholar
  44. 44.
    Delhaye, B., Lefèvre, P., Thonnard, J.-L.: Dynamics of fingertip contact during the onset of tangential slip. J. R. Soc. Interface 11(20140698), 1–11 (2014). doi: 10.1098/rsif.2014.0698 Google Scholar
  45. 45.
    Fagiani, R., Massi, F., Chatelet, E., Berthier, Y., Akay, A.: Tactile perception by friction induced vibrations. Tribol. Int. 44, 1100–1110 (2011)CrossRefGoogle Scholar
  46. 46.
    Martinot, F.: The influence of surface commensurability on roughness perception with a bare finger. In: Proceedings of Eurohaptics 2006, Paris (France), CD-Rom p. 9 (2006)Google Scholar
  47. 47.
    Scheibert, J., Leurent, S., Prevost, A., Debregeas, G.: The role of fingerprints in the coding of tactile information probed with a biomimetic sensor. Science 323, 1503–1506 (2009)CrossRefGoogle Scholar
  48. 48.
    Fagiani, R., Massi, F., Chatelet, E., Costes, J.-P., Berthier, Y.: Contact of a finger on rigid surfaces and textiles: friction coefficient and induced vibrations. Tribol. Lett. 48, 145–158 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  • Marie-Ange Bueno
    • 1
  • Betty Lemaire-Semail
    • 2
  • Michel Amberg
    • 2
  • Frédéric Giraud
    • 2
  1. 1.Laboratoire de Physique et Mécanique Textiles, Ecole Nationale Supérieure d’Ingénieurs Sud Alsace (ENSISA)University Haute AlsaceMulhouse CedexFrance
  2. 2.Laboratoire d’Electrotechnique et d’Electronique de Puissance, IRCICAUniversity Lille 1Villeneuve d’AscqFrance

Personalised recommendations