Tribology Letters

, 59:1 | Cite as

A Technique for the Experimental Determination of the Length and Strength of Adhesive Interactions Between Effectively Rigid Materials

Methods Paper

Abstract

To describe adhesion between bodies of known arbitrary shape and known elastic properties, contact mechanics models require knowledge or assumptions of a minimum of two parameters, the strength of the adhesive interaction (characterized by the intrinsic work of adhesion Wadh,int) and the length scale of the interaction (described by the range of adhesion z0). One parameter can easily be measured if the other is estimated or assumed, but experimental techniques for determining both simultaneously are lacking. Here, we demonstrate a novel technique—called the Snap-in/pull-off Numerical Adhesion Parameter method—for experimentally determining both parameters simultaneously using adhesion measurements performed with an atomic force microscope probe whose geometry has been characterized. The method applies to materials that approach the rigid limit (high elastic moduli). The technique is explained and validated analytically for simple shapes (flat punch, paraboloid, and right cone), and trends in results are compared against prior literature. This approach allows calculation of the adhesion parameters to enable prediction of adhesion behavior, including for advanced technology applications.

Keywords

Adhesion Nanoscale Work of adhesion Range of adhesion AFM TEM 

Notes

Acknowledgments

The authors acknowledge useful discussions with K. Turner and D. Grierson. R.W.C and T.D.B.J. acknowledge support from National Science Foundation under award No. CMMI12-00093. R.W.C., T.D.B.J., and J.A.L. acknowledge support from the UPenn MRSEC Program of the National Science Foundation under award No. DMR11-20901. R.W.C acknowledges support from AFOSR under Contract No. FA2386-14-1-4071 AOARD.

References

  1. 1.
    Persson, B.: Adhesion between elastic bodies with randomly rough surfaces. Phys. Rev. Lett. 89, 245502 (2002)CrossRefGoogle Scholar
  2. 2.
    Mastrangelo, C.H., Hsu, C.H.: A simple experimental technique for the measurement of the work of adhesion of microstructures. 5th Technical Digest, IEEE Solid–State Sensor and Actuator Workshop, pp. 208–212 (1992)Google Scholar
  3. 3.
    Greenwood, J.A.: Adhesion of small spheres. Philos. Mag. 89, 945–965 (2009)CrossRefGoogle Scholar
  4. 4.
    Yao, H., Ciavarella, M., Gao, H.: Adhesion maps of spheres corrected for strength limit. J. Colloid Interface Sci. 315, 786–790 (2007)CrossRefGoogle Scholar
  5. 5.
    Grierson, D.S., Liu, J., Carpick, R.W., Turner, K.T.: Adhesion of nanoscale asperities with power-law profiles. J. Mech. Phys. Solids 61, 597–610 (2013)CrossRefGoogle Scholar
  6. 6.
    Feng, J.Q.: Adhesive contact of elastically deformable spheres: a computational study of pull-off force and contact radius. J. Colloid Interface Sci. 238, 318–323 (2001)CrossRefGoogle Scholar
  7. 7.
    Israelachvili, J.N.: Intermolecular and Surface Forces. Academic Press, San Francisco, CA (2011)Google Scholar
  8. 8.
    Maugis, D.: Adhesion of spheres: the JKR-DMT transition using a Dugdale model. J. Colloid Interface Sci. 150, 243–269 (1992)CrossRefGoogle Scholar
  9. 9.
    Pastewka, L., Robbins, M.O.: Contact between rough surfaces and a criterion for macroscopic adhesion. Proc. Natl. Acad. Sci. 111, 3298–3303 (2014)CrossRefGoogle Scholar
  10. 10.
    Barthel, E.: On the description of the adhesive contact of spheres with arbitrary interaction potentials. J. Colloid Interface Sci. 200, 7–18 (1998)CrossRefGoogle Scholar
  11. 11.
    Mulakaluri, N., Persson, B.: Adhesion between elastic solids with randomly rough surfaces: comparison of analytical theory with molecular-dynamics simulations. EPL (Europhysics Letters). 96, 66003 (2011)Google Scholar
  12. 12.
    Johnson, K.L.: Contact Mechanics. Cambridge University Press, Cambridge (2011)Google Scholar
  13. 13.
    Zheng, Z., Yu, J.: Using the Dugdale approximation to match a specific interaction in the adhesive contact of elastic objects. J. Colloid Interface Sci. 310, 27–34 (2007)CrossRefGoogle Scholar
  14. 14.
    Yu, N., Polycarpou, A.A.: Adhesive contact based on the Lennard–Jones potential: a correction to the value of the equilibrium distance as used in the potential. J. Colloid Interface Sci. 278, 428–435 (2004)CrossRefGoogle Scholar
  15. 15.
    Jarvis, S.P., Oral, A., Weihs, T.P., Pethica, J.B.: A novel force microscope and point contact probe. Rev. Sci. Instrum. 64, 3515 (1993)CrossRefGoogle Scholar
  16. 16.
    Jarvis, S.P., Yamada, H., Yamamoto S.-I., Tokumoto, H.: A new force controlled atomic force microscope for use in ultrahigh vacuum. Rev. Sci. Instrum. 67, 2281 (1996)CrossRefGoogle Scholar
  17. 17.
    Ashby, P.D., Chen, L.W., Lieber, C.M.: Probing intermolecular forces and potentials with magnetic feedback chemical force microscopy. J. Am. Chem. Soc. 122, 9467 (2000)CrossRefGoogle Scholar
  18. 18.
    Giessibl, F.J.: Advances in atomic force microscopy. Rev. Mod. Phys. 75, 949–983 (2003) CrossRefGoogle Scholar
  19. 19.
    Joyce, S.A., Houston, J.E.: A new force sensor incorporating force-feedback control for interfacial force microscopy. Rev. Sci. Instrum. 62, 710 (1991)CrossRefGoogle Scholar
  20. 20.
    Grierson, D., Flater, E., Carpick, R.: Accounting for the JKR-DMT transition in adhesion and friction measurements with atomic force microscopy. J. Adhes. Sci. Technol. 19, 291–311 (2005)CrossRefGoogle Scholar
  21. 21.
    Greenwood, J.: Adhesion of elastic spheres. Proc. Roy. Soc. A 453, 1277–1297 (1997)CrossRefGoogle Scholar
  22. 22.
    Tabor, D.: Surface forces and surface interactions. J. Colloid Interface Sci. 58, 2–13 (1977)CrossRefGoogle Scholar
  23. 23.
    Persson, B.: Nanoadhesion. Wear 254, 832–834 (2003)CrossRefGoogle Scholar
  24. 24.
    Jacobs, T.D.B., Lefever, J.A., Carpick, R.W.: Measurement of the length and strength of adhesive interactions in a nanoscale silicon-diamond interface. Adv. Mater. Interfaces (2015). doi:10.1002/admi.201400547
  25. 25.
    Chung, K., Lee, Y., Kim, D.: Characteristics of fracture during the approach process and wear mechanism of a silicon AFM tip. Ultramicroscopy 102, 161–171 (2005)CrossRefGoogle Scholar
  26. 26.
    Liu, J., Notbohm, J.K., Carpick, R.W., Turner, K.T.: Method for characterizing nanoscale wear of atomic force microscope tips. ACS Nano 4, 3763–3772 (2010)CrossRefGoogle Scholar
  27. 27.
    Cappella, B., Dietler, G.: Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34, 1–104 (1999)CrossRefGoogle Scholar
  28. 28.
    Ohler, B.: Cantilever spring constant calibration using laser Doppler vibrometry. Rev. Sci. Instrum. 78, 063701 (2007)CrossRefGoogle Scholar
  29. 29.
    Greiner, C., Felts, J.R., Dai, Z., King, W.P., Carpick, R.W.: Controlling nanoscale friction through the competition between capillary adsorption and thermally activated sliding. ACS Nano 6, 4305–4313 (2012)CrossRefGoogle Scholar
  30. 30.
    Hui, C.-Y., Long, R.: Direct extraction of work of adhesion from contact experiments: generalization of JKR theory to flexible structures and large deformation. J Adhes. 88, 70–85 (2012)CrossRefGoogle Scholar
  31. 31.
    Jacobs, T.D.B., Ryan, K.E., Keating, P.L., Grierson, D.S., Lefever, J.A., Turner, K.T., Harrison, J.A., Carpick, R.W.: The effect of atomic-scale roughness on the adhesion of nanoscale asperities: a combined simulation and experimental investigation. Tribol. Lett. 50, 81–93 (2013)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2015

Authors and Affiliations

  1. 1.Department of Mechanical Engineering and Materials ScienceUniversity of PittsburghPittsburghUSA
  2. 2.Department of Materials Science and EngineeringUniversity of PennsylvaniaPhiladelphiaUSA
  3. 3.Department of Mechanical Engineering and Applied MechanicsUniversity of PennsylvaniaPhiladelphiaUSA

Personalised recommendations