Advertisement

Tribology Letters

, Volume 56, Issue 3, pp 563–572 | Cite as

Tribochemical Formation of Sulphide Tribofilms from a Ti–C–S Coating Sliding Against Different Counter Surfaces

  • Harald NybergEmail author
  • Jill Sundberg
  • Erik Särhammar
  • Tomas Nyberg
  • Ulf Jansson
  • Staffan Jacobson
Original Paper

Abstract

Tribochemically active TiCS coatings are nanocomposite coatings containing a S-doped titanium carbide, from which S can be released in a tribological contact. This work studies tribochemical reactions between a TiCS coating and various counter surface materials, and their effect on the tribological performance. Tribological tests were performed in a ball-on-disc set-up, using balls of five different materials as sliding partners for the coating: 100Cr6 steel, pure W, WC, 316-L steel and Al2O3. For W balls, a WS2 tribofilm was formed, leading to low friction (down to µ = 0.06). Furthermore, increasing normal load on the W balls was found to lead to a strong decrease in µ and earlier formation of the low-friction WS2 tribofilm. Similar WS2 and MoS2 tribofilms were, however, not formed from WC- and Mo-containing 316-L balls. The performance when using WC and Al2O3 balls was significantly worse than for the two steel balls. It is suggested that this is due to sulphide formation from Fe, analogous to formation of anti-seizure tribofilms from S-containing extreme pressure additives and steel surfaces. The tribochemical activity of TiCS coatings, with the possibility of S release, is thus beneficial not only for pure W counter surfaces, but also for Fe-based sliding partners.

Keywords

Triboactive Tribofilm WS2 Sulphide Low friction 

Notes

Acknowledgments

The Swedish Foundation for Strategic Research is acknowledged for support.

References

  1. 1.
    Nossa, A., Cavaleiro, A.: The influence of the addition of C and N on the wear behaviour of W–S–C/N coatings. Surf. Coat. Technol. 142–144, 984–991 (2001)CrossRefGoogle Scholar
  2. 2.
    Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: WC/DLC/WS2 nanocomposite coatings for aerospace tribology. Tribol. Lett. 6(2), 75–78 (1999)CrossRefGoogle Scholar
  3. 3.
    Podgornik, B., Hren, D., Vižintin, J., Jacobson, S., Stavlid, N., Hogmark, S.: Combination of DLC coatings and EP additives for improved tribological behaviour of boundary lubricated surfaces. Wear 261(1), 32–40 (2006). doi: 10.1016/j.wear.2005.09.007 CrossRefGoogle Scholar
  4. 4.
    De Barros, M.I., Bouchet, J., Raoult, I., Le Mogne, T., Martin, J.M., Kasrai, M., Yamada, Y.: Friction reduction by metal sulfides in boundary lubrication studied by XPS and XANES analyses. Wear 254(9), 863–870 (2003). doi: 10.1016/S0043-1648(03)00237-0
  5. 5.
    Lara, J., Blunt, T., Kotvis, P., Riga, A., Tysoe, W.T.: Surface chemistry and extreme-pressure lubricant properties of dimethyl disulfide. J. Phys. Chem. B 102(10), 1703–1709 (1998)CrossRefGoogle Scholar
  6. 6.
    Sawyer, W.G., Blanchet, T.A.: Lubrication of Mo, W, and their alloys with H2S gas admixtures to room temperature air. Wear 225229, Part 1(0), 581–586 (1999). doi: 10.1016/S0043-1648(99)00020-4
  7. 7.
    Sundberg, J., Nyberg, H., Särhammar, E., Kádas, K., Wang, L., Eriksson, O., Nyberg, T., Jacobson, S., Jansson, U.: Tribochemically active TiCS nanocomposite coatings. Mater. Res. Lett. 1(3), 148–155 (2013). doi: 10.1080/21663831.2013.802262 CrossRefGoogle Scholar
  8. 8.
    Sanchez-Lopez, J.C., Martinez-Martinez, D., Lopez-Cartes, C., Fernandez, A.: Tribological behaviour of titanium carbide/amorphous carbon nanocomposite coatings: from macro to the micro-scale. Surf. Coat. Technol. 202(16), 4011–4018 (2008)CrossRefGoogle Scholar
  9. 9.
    Pei, Y.T., Galvan, D., De Hosson, J.T.M., Cavaleiro, A.: Nanostructured TiC/a-C coatings for low friction and wear resistant applications. Surf. Coat. Technol. 198(1–3), 44–50 (2005). doi: 10.1016/j.surfcoat.2004.10.106 CrossRefGoogle Scholar
  10. 10.
    Lindquist, M., Wilhelmsson, O., Jansson, U., Wiklund, U.: Tribofilm formation and tribological properties of TiC and nanocomposite TiAlC coatings. Wear 266(3–4), 379–387 (2009). doi: 10.1016/j.wear.2008.04.046 CrossRefGoogle Scholar
  11. 11.
    Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic-modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7(6), 1564–1583 (1992). doi: 10.1557/jmr.1992.1564 CrossRefGoogle Scholar
  12. 12.
    Lewin, E., Wilhelmsson, O., Jansson, U.: Nanocomposite nc-TiC/a-C thin films for electrical contact applications. J. Appl. Phys. 100(5) (2006). doi: 10.1063/1.2336302
  13. 13.
    Grosseau-Poussard, J.L., Moine, P., Brendle, M.: Shear strength measurements of parallel MoSx thin films. Thin Solid Films 307(1–2), 163–168 (1997). doi: 10.1016/S0040-6090(97)00205-8 CrossRefGoogle Scholar
  14. 14.
    Chastain, J., King, R.C. (eds.): Handbook of X-ray Photoelectron Spectroscopy. Physical Electronics, Eden Prairie (1995)Google Scholar
  15. 15.
    Zabinski, J.S., McDevitt, N.T.: Raman spectra of inorganic compounds related to solid state tribochemical studies. In vol. WL-TR-96-4034. Wright-Patterson Air Force Base, Dayton, Ohio (1996)Google Scholar
  16. 16.
    de Faria, D.L.A., Venâncio Silva, S., de Oliveira, M.T.: Raman microspectroscopy of some iron oxides and oxyhydroxides. J. Raman Spectrosc. 28(11), 873–878 (1997). doi: 10.1002/(sici)1097-4555(199711)28:11<873:aid-jrs177>3.0.co;2-b CrossRefGoogle Scholar
  17. 17.
    Vogt, H., Chattopadhyay, T., Stolz, H.J.: Complete first-order Raman spectra of the pyrite structure compounds FeS2, MnS2 AND SiP2. J. Phys. Chem. Solids 44(9), 869–873 (1983). doi: 10.1016/0022-3697(83)90124-5 CrossRefGoogle Scholar
  18. 18.
    Sundberg, J., Nyberg, H., Särhammar, E., Gustavsson, F., Kubart, T., Nyberg, T., Jacobson, S., Jansson, U.: Influence of Ti addition on the structure and properties of low-friction W–S–C coatings. Surf. Coat. Technol. 232, 340–348 (2013). doi: 10.1016/j.surfcoat.2013.05.032 CrossRefGoogle Scholar
  19. 19.
    Voevodin, A.A., O’Neill, J.P., Zabinski, J.S.: Nanocomposite tribological coatings for aerospace applications. Surf. Coat. Technol. 116–119, 36–45 (1999)CrossRefGoogle Scholar
  20. 20.
    Polcar, T., Evaristo, M., Cavaleiro, A.: Friction of self-lubricating W–S–C sputtered coatings sliding under increasing load. Plasma Process. Polym. 4(S1), S541–S546 (2007). doi: 10.1002/ppap.200731402 CrossRefGoogle Scholar
  21. 21.
    Hai-dou, W., Da-ming, Z., Kun-lin, W., Jia-jun, L.: Comparison of the tribological properties of an ion sulfurized coating and a plasma sprayed FeS coating. Mater. Sci. Eng. A 357(1–2), 321–327 (2003). doi: 10.1016/S0921-5093(03)00209-0 CrossRefGoogle Scholar
  22. 22.
    Hu, C., Zou, J., Qian, J., Jin, D., Sun, X.: Study on friction reduction and wear resistance process and composition of FeS solid lubrication duplex layer. Adv. Mater. Res. 502, 60–66 (2012)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • Harald Nyberg
    • 1
    Email author
  • Jill Sundberg
    • 2
  • Erik Särhammar
    • 3
  • Tomas Nyberg
    • 3
  • Ulf Jansson
    • 2
  • Staffan Jacobson
    • 1
  1. 1.Tribomaterials Group, Department of Engineering SciencesUppsala UniversityUppsalaSweden
  2. 2.Ångström Laboratory, Department of ChemistryUppsala UniversityUppsalaSweden
  3. 3.Thin Films Group, Department of Engineering SciencesUppsala UniversityUppsalaSweden

Personalised recommendations