Tribology Letters

, Volume 56, Issue 3, pp 517–529 | Cite as

Tribological Behavior of New Martensitic Stainless Steels Using Scratch and Dry Wear Test

  • A. Dalmau
  • W. Rmili
  • D. Joly
  • C. Richard
  • A. Igual-Muñoz
Original Paper

Abstract

This paper focuses on the tribological characterization of new martensitic stainless steels by two different tribological methods (scratch and dry wear tests) and their comparison to the austenitic standard stainless steel AISI 316L. The scratch test allows obtaining critical loads, scratch friction coefficients, scratch hardness and specific scratch wear rate, and the dry wear test to quantify wear volumes. The damage has been studied by ex situ scanning electron microscopy. Wear resistance was related to the hardness and the microstructure of the studied materials, where martensitic stainless steels exhibit higher scratch wear resistance than the austenitic one, but higher hardness of the martensitic alloys did not give better scratch resistance when comparing with themselves. It has been proved it is possible to evaluate the scratch wear resistance of bulk stainless steels using scratch test. The austenitic material presented lower wear volume than the martensitic ones after the dry wear test due to phase transformation and the hardening during sliding.

Keywords

Martensitic stainless steels Bulk material Scratch test Dry wear test Wear 

References

  1. 1.
    Kwok, C.T., Lo, K.H., Cheng, F.T., Man, H.C.: Effect of processing conditions on the corrosion performance of laser surface-melted AISI 440C martensitic stainless steel. Surf. Coat. Technol. 166, 221–230 (2003)CrossRefGoogle Scholar
  2. 2.
    Cheng, Z., Li, C.X., Dong, H., Bell, T.: Low temperature plasma nitrocarburising of AISI 316 austenitic stainless steel. Surf. Coat. Technol. 191, 195–200 (2005)CrossRefGoogle Scholar
  3. 3.
    Ma, X.P., Wang, L.J., Liu, C.M., Subramanian, S.V.: Microstructure and properties of 13Cr5Ni1Mo0.025Nb0.09V0.06 N super martensitic stainless steel. Mater. Sci. Eng., A 539, 271–279 (2012)CrossRefGoogle Scholar
  4. 4.
    Thibault, D., Bocher, P., Thomas, M.: Residual stress and microstructure in welds of 13%Cr–4%Ni martensitic stainless steel. J. Mater. Process. Technol. 209, 2195–2202 (2009)CrossRefGoogle Scholar
  5. 5.
    Li, C.X., Bell, T.: Corrosion properties of plasma nitrided AISI 410 martensitic stainless steel in 3.5 % NaCl and 1 % HCl aqueous solutions. Corros. Sci. 48, 2036–2049 (2006)CrossRefGoogle Scholar
  6. 6.
    Puli, R., Janaki Ram, G.D.: Microstructures and properties of friction surfaced coatings in AISI 440C martensitic stainless steel. Surf. Coat. Technol 207, 310–318 (2012)CrossRefGoogle Scholar
  7. 7.
    Garcideandrés, C., Caruana, G., Alvarez, L.F.: Control of M23C6 carbides in 0.45C–13Cr martensitic stainless steel by means of three representative heat treatment parameters. Mater. Sci. Eng., A 241, 211–215 (1998)CrossRefGoogle Scholar
  8. 8.
    Mahmoudi, A., Ghavidel, M.R.Z., Nedjad, S.H., Heidarzadeh, A., Ahmadabadi, M.N.: Aging behavior and mechanical properties of maraging steels in the presence of submicrocrystalline Laves phase particles. Mater. Charact. 62, 976–981 (2011)CrossRefGoogle Scholar
  9. 9.
    Meshram, S.D., Madhusudhan Reddy, G., Pandey, S.: Friction stir welding of maraging steel (Grade-250). Mater. Des. 49, 58–64 (2013)CrossRefGoogle Scholar
  10. 10.
    Jiang, H., Browning, R., Sue, H.-J.: Understanding of scratch-induced damage mechanisms in polymers. Polymer (Guildf). 50, 4056–4065 (2009)CrossRefGoogle Scholar
  11. 11.
    Bull, S.J., Berasetegui, E.G.: An overview of the potential of quantitative coating adhesion measurement by scratch testing. Tribol. Int. 39, 99–114 (2006)CrossRefGoogle Scholar
  12. 12.
    Rodrigo, A., Ichimura, H.: Analytical correlation of hardness and scratch adhesion for hard films. Surf. Coat. Technol. 148, 8–17 (2001)CrossRefGoogle Scholar
  13. 13.
    Rudermann, Y., Iost, A., Bigerelle, M.: Scratch tests to contribute designing performance maps of multilayer polymeric coatings. Tribol. Int. 44, 585–591 (2011)CrossRefGoogle Scholar
  14. 14.
    Browning, R., Sue, H.-J., Minkwitz, R., Charoensirisomboon, P.: Effects of acrylonitrile content and molecular weight on the scratch behavior of styrene-acrylonitrile random copolymers. Polym. Eng. Sci. 51, 2282–2294 (2011)CrossRefGoogle Scholar
  15. 15.
    Petit, F., Ott, C., Cambier, F.: Multiple scratch tests and surface-related fatigue properties of monolithic ceramics and soda lime glass. J. Eur. Ceram. Soc. 29, 1299–1307 (2009)CrossRefGoogle Scholar
  16. 16.
    Friedrich, K., Sue, H.J., Liu, P., Almajid, A.A.: Scratch resistance of high performance polymers. Tribol. Int. 44, 1032–1046 (2011)CrossRefGoogle Scholar
  17. 17.
    Xiang, C., Sue, H.J., Chu, J., Coleman, B.: Scratch behavior and material property relationship in polymers. J. Polym. Sci., Part B: Polym. Phys. 39, 47–59 (2001)CrossRefGoogle Scholar
  18. 18.
    Choi, W.-J., Lee, J.H., Weon, J.-I.: Effects of photodegradation and thermal ageing on the scratch behavior of uncoated thermoplastic olefin. Tribol. Int. 67, 90–97 (2013)CrossRefGoogle Scholar
  19. 19.
    Bull, S.J.: Failure mode maps in the thin film scratch adhesion test. Tribol. Int. 30, 491–498 (1997)CrossRefGoogle Scholar
  20. 20.
    Bull, S.J.: Can scratch testing be used as a model for the abrasive wear of hard coatings? Wear 233–235, 412–423 (1999)CrossRefGoogle Scholar
  21. 21.
    Sander, T., Tremmel, S., Wartzack, S.: A modified scratch test for the mechanical characterization of scratch resistance and adhesion of thin hard coatings on soft substrates. Surf. Coat. Technol. 206, 1873–1878 (2011)CrossRefGoogle Scholar
  22. 22.
    Lin, J.-S., Zhou, Y.: Can scratch tests give fracture toughness? Eng. Fract. Mech. 109, 161–168 (2013)CrossRefGoogle Scholar
  23. 23.
    Akono, A.-T., Ulm, F.-J.: Scratch test model for the determination of fracture toughness. Eng. Fract. Mech. 78, 334–342 (2011)CrossRefGoogle Scholar
  24. 24.
    Beake, B.D., Liskiewicz, T.W.: Comparison of nano-fretting and nano-scratch tests on biomedical materials. Tribol. Int. 63, 123–131 (2013)CrossRefGoogle Scholar
  25. 25.
    ASTM International, ASTM C1624–05. Standard test method for adhesion making potentiostatic and potentiodynamic anodic polarization measurements, 2010: ASTM International, ASTM C1624–05. Standard test method for adhesion making potentiostatic and potentiodynamic anodic polarization measurements, 2010Google Scholar
  26. 26.
    Kurkcu, P., Andena, L., Pavan, A.: An experimental investigation of the scratch behaviour of polymers: 1. Influence of rate-dependent bulk mechanical properties. Wear 290–291, 86–93 (2012)CrossRefGoogle Scholar
  27. 27.
    Francois, R.: Métallurgie et traitement thermique de nouveaux aciers maraging. Trait. Therm. 390, 51–56 (2008)Google Scholar
  28. 28.
    Samuels, L.E.: Light Microscopy of Carbon Steels. Materials Park, Ohio: ASM International, c1999. (199)ADGoogle Scholar
  29. 29.
    Tsakiris, V., Edmonds, D.V.: Martensite and deformation twinning in austenitic steels. Mater. Sci. Eng., A 273–275, 430–436 (1999)CrossRefGoogle Scholar
  30. 30.
    Tong, Z., Ding, C., Yan, D.: A fracture model for wear mechanism in plasma sprayed ceramic coating materials. Wear 155, 309–316 (1992)CrossRefGoogle Scholar
  31. 31.
    Vargonen, M., Yang, Y., Huang, L., Shi, Y.: Molecular simulation of tip wear in a single asperity sliding contact. Wear 307, 150–154 (2013)CrossRefGoogle Scholar
  32. 32.
    Farias, M.C.M., Souza, R.M., Sinatora, A., Tanaka, D.K.: The influence of applied load, sliding velocity and martensitic transformation on the unlubricated sliding wear of austenitic stainless steels. Wear 263, 773–781 (2007)CrossRefGoogle Scholar
  33. 33.
    Zandrahimi, M., Bateni, M.R., Poladi, A., Szpunar, J.A.: The formation of martensite during wear of AISI 304 stainless steel. Wear 263, 674–678 (2007)CrossRefGoogle Scholar
  34. 34.
    Misra, R.D.K., Venkatsurya, P., Wu, K.M., Karjalainen, L.P.: Ultrahigh strength martensite–austenite dual-phase steels with ultrafine structure: the response to indentation experiments. Mater. Sci. Eng., A 560, 693–699 (2013)CrossRefGoogle Scholar
  35. 35.
    Song, E.P., Hwang, B., Lee, S., Kim, N.J., Ahn, J.: Correlation of microstructure with hardness and wear resistance of stainless steel blend coatings fabricated by atmospheric plasma spraying. Mater. Sci. Eng., A 429, 189–195 (2006)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  • A. Dalmau
    • 1
    • 2
  • W. Rmili
    • 1
  • D. Joly
    • 1
  • C. Richard
    • 1
  • A. Igual-Muñoz
    • 2
  1. 1.Laboratoire de Mécanique et Rhéologie EA 2640Université François Rabelais de ToursToursFrance
  2. 2.Institute for Industrial, Radiophysical and Environmental SafetyUniversitat Politècnica de ValènciaValenciaSpain

Personalised recommendations