Tribology Letters

, Volume 56, Issue 3, pp 491–500 | Cite as

Experimental Investigation of Lubrication Film Starvation of Polyalphaolefin Oil at High Speeds

  • He Liang
  • Dan Guo
  • Jianbin Luo
Original Paper


The lubrication behavior of starved elastohydrodynamic contacts at high speeds was investigated in this study. A new ball-on-disc test rig with the ability to measure traction force at high speeds up to 100 m/s and lubrication film thickness at speeds up to 42 m/s was built. The relative optical interference intensity technique was used to measure the film thickness. The experimental results show that the film thickness decreased rapidly and asymmetrically when the speed exceeded a critical speed under the starved lubrication condition. Starvation is governed by the amount of lubricant available both in the inlet region and on the side of the oil reservoir. The shape of the oil reservoir becomes asymmetric and the amount of oil gradually reduces against the speed at high speeds because of the centrifugal effects, under which the oil on the outer side of the oil reservoir will be thrown away and the oil on the inner side of the oil reservoir will be compressed. The balance of oil supply and oil loss due to centrifugal force determines the starvation behavior.


High speeds Elastohydrodynamic lubrication Pure rolling Starvation Centrifugal force 

List of Symbols


Wave length of the incident light


Reflective index of the lubricant


Interference order


Light intensity

Imax, Imin

Maximum or minimum interference light intensity


Relative interference light intensity \(\bar{I} = (2I - I_{\hbox{max} } - I_{\hbox{min} } )/(I_{\hbox{max} } - I_{\hbox{min} } )\)


Relative light intensity when the lubricant film thickness is zero


Lubricant film thickness (m)


The central film thickness (m)


The minimum film thickness (m)


Reduced modulus (Pa)


Operating temperature (K)


Ambient viscosity (Pa s)


Lubricant entrainment speed, u = (u 1 + u 2)/2

u1, u2

Surface velocities of disc and ball (m/s)


Maximum Herzian pressure (Pa)


Load (N)



The work was financially supported by the National Natural Science Foundation of China (51335005, 51375255, 51321092), the International Science & Technology Cooperation Project (No. 2011DFA70980) and National Key Basic Research Program of China (No. 2014CB046404).


  1. 1.
    Grubin, A.N., Vinogradova, I.E., Ketova, K.F.: Investigation of the contact of machine components. Central Scientific Research Institute for Technology and Mechanical Engineering (1949)Google Scholar
  2. 2.
    Hamrock, B.J., Dowson, D.: Isothermal elastohydrodynamic lubrication of point contacts: part III—fully flooded results. J. Lubr. Technol. 99, 264 (1977)CrossRefGoogle Scholar
  3. 3.
    Cheng, H., Sternlicht, B.: A numerical solution for the pressure, temperature, and film thickness between two infinitely long, lubricated rolling and sliding cylinders, under heavy loads. J. Basic Eng. 87(3), 695–704 (1965)CrossRefGoogle Scholar
  4. 4.
    Zhu, D., Wen, S.: A full numerical solution for the thermoelastohydrodynamic problem in elliptical contacts. J. Tribol. 106(2), 246–254 (1984)CrossRefGoogle Scholar
  5. 5.
    Luo, J., Wen, S., Huang, P.: Thin film lubrication. Part I. Study on the transition between EHL and thin film lubrication using a relative optical interference intensity technique. Wear 194(1), 107–115 (1996)CrossRefGoogle Scholar
  6. 6.
    Luo, J., Shen, M., Wen, S.: Tribological properties of nanoliquid film under an external electric field. J. Appl. Phys. 96(11), 6733–6738 (2004)CrossRefGoogle Scholar
  7. 7.
    Xie, G., Luo, J., Liu, S., Guo, D., Zhang, C.: Nanoconfined liquid aliphatic compounds under external electric fields: roles of headgroup and alkyl chain length. Soft Matter 7(9), 4453–4460 (2011)CrossRefGoogle Scholar
  8. 8.
    Xiao, H., Guo, D., Liu, S., Lu, X., Luo, J.: Experimental investigation of lubrication properties at high contact pressure. Tribol. Lett. 40(1), 85–97 (2010)CrossRefGoogle Scholar
  9. 9.
    Hardy, W., Doubleday, I.: Boundary lubrication. The paraffin series. Proc. R. Soc. Lond. A 100(707), 550–574 (1922)Google Scholar
  10. 10.
    Thompson, P., Robbins, M.: Origin of stick-slip motion in boundary lubrication. Science 250(4982), 792–794 (1990)CrossRefGoogle Scholar
  11. 11.
    Erdemir, A.: Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int. 38(3), 249–256 (2005)CrossRefGoogle Scholar
  12. 12.
    Hu, Y., Ma, T., Wang, H.: Energy dissipation in atomic-scale friction. Friction 1(1), 24–40 (2013)Google Scholar
  13. 13.
    Dowson, D., Higginson, G.: Elastohydrodynamic lubrication, the fundamentals of roller and gear lubrication. Oxford (1966)Google Scholar
  14. 14.
    Lubrecht, A., Ten Napel, W., Bosma, R.: Multigrid, an alternative method of solution for two-dimensional elastohydrodynamically lubricated point contact calculations. J. Tribol. 109(3), 437–443 (1987)CrossRefGoogle Scholar
  15. 15.
    Venner, C., Lubrecht, A.: Multilevel Methods in Lubrication. The Netherlands (2000)Google Scholar
  16. 16.
    Gohar, R., Cameron, A.: Optical measurement of oil film thickness under elastohydrodynamic lubrication. Nature 200(490), 458–459 (1963)CrossRefGoogle Scholar
  17. 17.
    Cameron, A., Gohar, R.: Theoretical and experimental studies of the oil film in lubricated point contact. Proc. R. Soc. Lond. A 291(1427), 520–536 (1966)CrossRefGoogle Scholar
  18. 18.
    Johnston, G., Wayte, R., Spikes, H.: The measurement and study of very thin lubricant films in concentrated contacts. Tribol. Trans. 34(2), 187–194 (1991)CrossRefGoogle Scholar
  19. 19.
    Hartl, M., Krupka, I., Poliscuk, R., Liska, M., Molimard, J., Querry, M., Vergne, P.: Thin film colorimetric interferometry. Tribol. Trans. 44(2), 270–276 (2001)CrossRefGoogle Scholar
  20. 20.
    Wolveridge, P., Baglin, K., Archard, J.: The starved lubrication of cylinders in line contact. Proc. Inst. Mech. Eng. 185(1), 1159–1169 (1970)CrossRefGoogle Scholar
  21. 21.
    Castle, P., Dowson, D.: A theoretical analysis of the starved elastohydrodynamic lubrication problem for cylinders in line contact. Proceedings of the Institution of Mechanical Engineers, pp. 131–137 (1972)Google Scholar
  22. 22.
    Ranger, A., Ettles, C., Cameron, A.: The solution of the point contact elasto-hydrodynamic problem. Proc. R. Soc. Lond. A. Math. Phys. Sci. 346(1645), 227–244 (1975)Google Scholar
  23. 23.
    Chevalier, F., Cann, P., Colin, F., Dalmaz, G., Lubrecht, A.: Film thickness in starved EHL point contacts. J. Tribol. 120(1), 126–133 (1998)CrossRefGoogle Scholar
  24. 24.
    Svoboda, P., Kostal, D., Krupka, I., Hartl, M.: Experimental study of starved EHL contacts based on thickness of oil layer in the contact inlet. Tribol. Int. 67, 140–145 (2013)CrossRefGoogle Scholar
  25. 25.
    Wedeven, L.D., Evans, D., Cameron, A.: Optical analysis of ball bearing starvation. J. Lubr. Technol. 93(3), 349–361 (1971)CrossRefGoogle Scholar
  26. 26.
    Chiu, Y.: An analysis and prediction of lubricant film starvation in rolling contact systems. ASLE Trans. 17(1), 22–35 (1974)CrossRefGoogle Scholar
  27. 27.
    Cann, P.M.E., Damiens, B., Lubrecht, A.A.: The transition between fully flooded and starved regimes in EHL. Tribol. Int. 37(10), 859–864 (2004)CrossRefGoogle Scholar
  28. 28.
    Lugt, P.M., Morales-Espejel, G.E.: A review of elasto-hydrodynamic lubrication theory. Tribol. Trans. 54(3), 470–496 (2011)CrossRefGoogle Scholar
  29. 29.
    Gloeckner, P., Ebert, F.-J.: Micro-sliding in high-speed aircraft engine ball bearings. Tribol. Trans. 53(3), 369–375 (2010)CrossRefGoogle Scholar
  30. 30.
    van Zoelen, M.T., Venner, C.H., Lugt, P.M.: Free surface thin layer flow on bearing raceways. J. Tribol. 130(2), 021802 (2008)CrossRefGoogle Scholar
  31. 31.
    Van Zoelen, M.T., Venner, C.H., Lugt, P.M.: Free surface thin layer flow in bearings induced by centrifugal effects. Tribol. Trans. 53(3), 297–307 (2010)CrossRefGoogle Scholar
  32. 32.
    Gershuni, L., Larson, M.G., Lugt, P.M.: Lubricant replenishment in rolling bearing contacts. Tribol. Trans. 51(5), 643–651 (2008)CrossRefGoogle Scholar
  33. 33.
    Zhang, C.H., Zhao, Y.C., Björling, M., Wang, Y., Luo, J.B., Prakash, B.: EHL properties of polyalkylene glycols and their aqueous solutions. Tribol. Lett. 45(3), 379–385 (2012)CrossRefGoogle Scholar
  34. 34.
    Hili, J., Olver, A.V., Edwards, S., Jacobs, L.: Experimental investigation of elastohydrodynamic (EHD) film thickness behavior at high speeds. Tribol. Trans. 53(5), 658–666 (2010)CrossRefGoogle Scholar
  35. 35.
    Ma, L., Zhang, C.: Discussion on the technique of relative optical interference intensity for the measurement of lubricant film thickness. Tribol. Lett. 36(3), 239–245 (2009)CrossRefGoogle Scholar
  36. 36.
    Kim, K., Sadeghi, F.: Three-dimensional temperature distribution in EHD lubrication. I-circular contact. ASME, transactions. J. Tribol. 114, 32–41 (1992)CrossRefGoogle Scholar
  37. 37.
    Liang, H., Guo, D., Reddyhoff, T., Spikes, H., Luo, J.: Influence of thermal effects on elastohydrodynamic (EHD) lubrication behavior at high speeds. Science China Technological Sciences (2014)Google Scholar
  38. 38.
    Yang, P., Qu, S., Kaneta, M., Nishikawa, H.: Formation of steady dimples in point TEHL contacts. J. Tribol. 123(1), 42 (2001)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2014

Authors and Affiliations

  1. 1.State Key Laboratory of TribologyTsinghua UniversityBeijingChina

Personalised recommendations